Notes for Labs 8 and 9 (Position Control for a Flexible Link and a Flexible Joint)

- 1. Return PID pre-lab and give some notes (as in class, use **fixed-step** ode45/ode5 solver in *Simulink*).
- 2. Return lead compensation post-lab and give notes (not just for speed: adds phase margin (and noise!)).
- 3. Review PID tuning rules (proportional/potential/power, integral/introduces, derivative/damping).
 - Proportional sets available control effort (think *potential*/*power*). Big impact on ω_d & rise time.
 - Integral reduces steady-state error but *introduces* overshoot/lag (systems today are already slow).
 - Derivative reduces overshoot but can increase steady-state error (think *damping*).
 - By damping *transients*, derivative can make system faster with respect to *settling time*.
 - A fast system *tracks* the input faster transients quickly die out.
 - This statement does not simply involve the system's bandwidth.
 - If the system simply has high bandwidth but no damping, its transients may *ring* for a long time causing annoyance or instability.
 - But too much derivative can amplify noise or demand too much control effort.

4. Explain strain gage gain.

- Book asks you to explain "how we obtained the strain [gage] gain" of 0.0254/0.45.
- The book notes the length of the link is L = 0.45 m and hopes that you'll know the strain gage is calibrated to give you deflection in inches (note: 1 in = 0.0254 m).
- Despite what it seems, the strain gage gain is *not* simply a unit conversion from inches to meters.

- (i) As the link deflects, its shape changes and the strain gage, which is located near the axis of rotation, is stretched (or compressed). We measure the magnitude of this stretch.
- (ii) For small deflection α , the arc length $L\alpha$ is approximately equal to the elongation of the link under the bending stress.
- (iii) Given an approximation of the arc length $L\alpha$, dividing it by L gives an approximation of α .
- (iv) The strain gage is calibrated so that 1 in of deflection corresponds to 1 V of measurement.
- So

$$\alpha \approx \underbrace{(\text{Measurement in V}) \times \frac{1 \text{ in }}{1 \text{ V}} \times \frac{0.0254 \text{ m}}{1 \text{ in }}}_{\text{ I radian}} \times \underbrace{\frac{\alpha}{L\alpha}}_{L = 0.45 \text{ m}} = \underbrace{(\text{Measurement in V}) \times \frac{0.0254 \text{ radians}}{0.45 \text{ V}}}_{\text{ O A S }}$$

This **linear approximation** is only valid for **small** α . The actual relationship is nonlinear.

- 5. We use a **low** gear ratio, which is one reason why the system is **slower**.
 - The book uses the wrong term (i.e., references gearbox from unconventional side).
 - The **low** gear ratio causes a relatively high reduction in the speed of the motor compared to the **high** gear ratio.
 - The slow system is easier to control.

- 6. Complete the Position Control for a Flexible Link and a Flexible Joint labs.
 - * FOR PRACTICE, partners should **switch roles** between **joint** and **link** labs.
 - Implement PID control for position regulation of both joint and link.
 - In *Simulink*, choose Summers from Math section of library (change | ++; adjust shape).
 - Do not use PID block. Use components from Math and Continuous (note: $K_i = 0$).
 - * Implement K_p with gain.
 - * If needed, implement K_i with (very small) gain and *integrator*.
 - * Implement K_d with (very small) gain and transfer function.
 - Use transfer function to implement as/(s+a) "derivative+filter." Set a = 200.
 - \cdot Wire from **output** and *not* error. Control will start far too high otherwise.
 - $\cdot\,$ Make sure you subtract eventual result (because we're wiring from <code>output</code>).
 - These modifications slow response, but they make derivative *safe* and *realizable*.
 - If you wish, wire up a simulated system for comparison. Capture its output as well.
 * You might relate this to using an observer (a subject of ECE 650 and ECE 750).
 - * Because it is upside down, encoder for angle α for the **JOINT** needs a $\times -1$ gain as well.
 - * You MUST implement a SAFETY STOP to stop simulation on an extreme measurement.
 - * Make sure DAC block has 0 V Termination checked **ON**.
 - * Use relational operator to compare output to constant and trigger a stop simulation.
 - * MAKE SURE you change saturation settings to ± 5 and rate limiter slew rate to ± 1000 .
 - For link configuration, adjust alpha offset so that $\alpha = 0$ at initial rest.
 - Run control with $K_p = K_i = K_d = 0$. Adjust alpha offset with numeric input until $\alpha = 0$.
 - PID tuning: joint ($t_s \le 0.6 \text{ s} / \text{P.O.} \le 2\% / e_{ss} \le 0.5\%$) and link ($t_s \le 0.6 \text{ s} / \text{P.O.} \le 5\% / e_{ss} \le 1\%$)
 - Initial output magnitude is K_p . If $K_p > 5$, initial output will be clipped.
 - Quantization noise from encoder makes derivative very noisy. Keep K_d very low.
 - Use numeric inputs in *ControlDesk* for tuning K_p and K_d gains.
 - Save YOUR FINAL ITERATION for the joint and for the link.
 - While tuning, recall the similar process in the gain compensation lab. Is PID more flexible?
 - You do not need separate controllers for the slow version of system, but keep slow system in mind when analyzing data in report! (e.g., compare expected *slow* response to data)
 - * AT ANY TIME, IF MOTOR STARTS CLICKING VERY QUICKLY, STOP THE EXPERI-MENT – DISCONNECT THE MOTOR IF NECESSARY!! High-frequency switching can cause **permanent damage**! It can be caused by unstable systems (e.g., high gains or positive poles).
 - ★ This nominally type-1 system may still have some steady-state error due to nonlinearities. Because it is already slow and has a low gear ratio, only a **very little** integral control should be needed.
 - \star The **dangling cables** can add significant dynamics. Keep them loose and out of the way.
- Tips:
 - Do work out of directory on local hard drive use as MATLAB working directory.
 - In Simulink, the hotkey for building a model is [Ctrl] [B].
 - Start *dSPACE ControlDesk* before doing *Simulink* builds.
 - In MATLAB, change *Termination* settings for DAC block check box to set 0 V stop value.
 - In *dSPACE* add a simState control.
 - (i) Wire simState to 2-option radio button Setup options "Run" (2) and "Stop" (0).
 - (ii) Set Capture Settings to *automatically* restart and set *capture time* to simulation time.

Restart simulation as needed by using simState control (i.e., no need to change modes).

- (i) To stop early, change simState to Stop.
- (ii) Before restarting, re-initialize Capture Settings by clicking Stop and then Start.
- (iii) When you're ready to start (e.g., after changing gains), set simState to Run.