
ECE 557: Control, Signals, and Systems Laboratory

Notes for Lab 7 (Tuning a PID Controller)

1. Return lead compensation pre-lab and give some notes.

• Optimization (calculus) is key to 1(a).

• Sometimes wrong form of compensator was recorded on paper (e.g., (s + a)/(s + b) instead of
(1 + s/a)/(1 + s/b)), but apparently correct form was used in rltool.

2. Return lag compensation lab reports and give some notes.

• Try to plot expected (i.e., theoretical) data on top of measured data (for comparison).

• Even if capture time is long, zoom in on interesting data (e.g., step edge).

• Post-lab questions ask about Bode steady-state error and lag compensator speed (relative to gain)
in general.

3. In simulations, force a time vector (help step) or use fixed-step Simulink methods with small steps.

4. REMINDER: Lab 8 AND lab 9 next week.

• Complete both prelabs. Both are PID labs, but they use different plants.

5. Some notes on proportional–integral–derivative (PID) control.

• Assume plant can be well modeled by 2nd-order system.

• Gain compensation alone:

– Decreases rise time (i.e., increases bandwidth (ωd)).

– Decreases error (i.e., it amplifies error input, which increases feedback response).

– Gives little control over damping (i.e., settling (σ) largely determined by plant).

• Lag compensation shifts root locus toward DC (i.e., toward s = 0 + j0):

– Relatively high DC gain gives low error even with low gain (i.e., damping ratio improves).

– Relatively low AC gain slows down system (i.e., low rise time (ωd) and settling time (σ)).

• Lead compensation shifts root locus toward leftward (i.e., toward s = −∞ + j0):

– Relatively high AC gain increases speed (i.e., high damping (σ) means quick transients).

– Increased phase improves stability margins (relates to high damping ratio ζ).

– Higher speed at lower gain greatly improves damping ratio (high σ for low ωd means high ζ).

• Old methods have three degrees of freedom (i.e., gain, pole–zero center, pole–zero width).

• PID uses tunable gains to give three degrees of easily implementable freedom.

– Adds an integrator and two zeros.

– Zeros act as “targets” for root locus.

– Diagonal movement provides control flexibility (i.e., gain, rise time/error, damping).

– Gains are easy to build and tune in the field.

– Adaptive PID controllers tune their own gains.

• Derivative term causes some problems.

(i) True differentiator is impossible to build. Zeros outnumber poles, and so it’s non-causal.

(ii) Error signal is not differentiable at instant of step input.

(iii) Gain that increases with frequency amplifies high-frequency noise.

– High frequency oscillations can damage plant.

So we apply low-pass filter a/(s + a) to output derivative. Make corner a relatively large.

– System is causal, but LPF impulse response rings control at every input quantization step.

∗ Each impulse peaks at ∼(2π/1024)× Kd a.

· So differentiator can cause clipping.

· If Kd is too large, can cause dangerous chatter or oscillations. So keep Kd < 1.

Copyright © 2007–2009 by Theodore P. Pavlic

Creative Commons Attribution-Noncommercial 3.0 License
Page 1 of 4

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

ECE 557 — Lab 7: Tuning a PID Controller Notes

6. PID systems theory with derivative approximation: Making theory match reality.

• The prototypical PID control system for our laboratory looks like:

Kp

r b Ki
1
s

+
G(s) = N(s)

D(s)
, Kp

s(s+p)

(plant)

b y

Kd s

+ e u

−

(i) The r-to-y and r-to-u transfer functions are:

Y (s)

R(s)
=

(

Kds
2 + Kps + Ki

)

N(s)

(Kds2 + Kps + Ki)N(s) + sD(s)
and

U(s)

R(s)
=

(

Kds
2 + Kps + Ki

)

D(s)

(Kds2 + Kps + Ki)N(s) + sD(s)
.

As expected, these two transfer functions have the same (three) poles and different zeros
(i.e., the internal dynamics are the same, but outputs have changed). The output transfer
function Y/R has three poles and two zeros, and so it is causal and can be analyzed in
rltool. However, the control transfer function U/R has three poles and four zeros, which
makes it non-causal. So we can predict what a step response would look like if such a
system could exist, but we cannot implement the system.

(ii) The derivative of e does not exist at the instant of a step, and so Simulink ’s du/dt block
(when using a fixed-step ode45/ode5 solver) will ignore that point. Consequently, the
Simulink and rltool r-to-y step responses will differ.

(iii) Even without the causality and differentiability issues, a differentiator amplifies the normally
benign high frequency oscillations from measurement noise.

• A first attempt to solve both problems is to replace the differentiator s with the “filtered differ-
entiator” as/(s + a) that has a ≫ 0.

(+) The control transfer function U/R is now causal and thus realizable.

(−) When r is a unit step and y(0−) = 0, the differentiator places a Kd-impulse into the a/(s+a)
filter, which initially peaks at Kda ≫ 0 (i.e., impulse response is Kd a e−at).

∗ So u(0) = Kp + Kda, which is very large and can damage plant (or cause saturation).

∗ To keep u(0) small, both a and Kd must be very small. Making a small makes the
differentiator approximation poor, and making Kd small reduces control flexibility.

∗ Intuitively, Kp should determine the available control effort and not Kd.

• Second attempt: use filtered a s/(s + a), but connect to −y instead of e. For regulation (i.e., step
input), ė = d/dt[r(t) − y(t)] = d/dt[Au(t) − y(t)] ≈ Aδ(t) − ẏ ≈ −ẏ. In fact, ė = −ẏ for t > 0.

Kp

r b Ki
1
s

+
G(s) =

N(s)
D(s)

, Kp

s(s+p)

(plant)

b y

as
s+a Kd

b

+ e + u

−−

(+) For step (i.e., “often constant”) inputs, this control “acts” like PID because e′ = r′−y′ ≈ −y′.

(+) For a ≫ 0, the r-to-y (and r-to-u) step responses roughly match trajectories from Simulink .

(+) A step input r does not excite the Kd a/(s + a) impulse response (i.e., Kd a e−at).

(+) For a ≫ 0, max{u(t)} ≈ u(0) = Kp, which matches intuition.

(−) The role of Kd is to shape the plant rather than shape the control response.

(−) Quantization steps from digital measurement of y (i.e., encoder count) puts impulses of size
2π/1024 ≈ 0.006 into Kd a/(s + a), and so Kd and a should still be picked with care.

Copyright © 2007–2009 by Theodore P. Pavlic

Creative Commons Attribution-Noncommercial 3.0 License
Page 2 of 4

http://en.wikipedia.org/wiki/Dormand-Prince_method
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

ECE 557 — Lab 7: Tuning a PID Controller Notes

• The SISO transfer functions for the r-to-e, r-to-u, and r-to-y systems can be found using the
formula

OUT(s)

IN(s)
=

sum of forward paths from in to out

1 + sum of negative feedback paths from out back to out
.

So

E(s)

R(s)
=

1

1 +
(

Kp + Ki

s

)

G(s)
1+Kd

as
s+a

G(s)

=
1 + Kd

as
s+a

G(s)

1 + Kd
as

s+a
G(s) +

(

Kp + Ki

s

)

G(s)

=
s (s + a) + Kd a s2G(s)

s (s + a) + Kd a s2G(s) + (s + a) (Kps + Ki)G(s)

=
s (s + a)D(s) + Kd a s2N(s)

s (s + a)D(s) + Kd a s2N(s) + (s + a) (Kps + Ki)N(s)
,

U(s)

R(s)
=

(

Kp + Ki

s

)

1 + G(s)
(

(

Kp + Ki

s

)

+ Kd
as

s+a

)

=
(s + a) (sKp + Ki)

s (s + a) + G(s) ((s + a) (sKp + Ki) + Kd a s2)

=
(s + a) (sKp + Ki)

s (s + a) + Kd a s2G(s) + (s + a) (sKp + Ki)G(s)

=
(s + a) (sKp + Ki)D(s)

s (s + a)D(s) + Kd a s2N(s) + (s + a) (sKp + Ki)N(s)
,

and

Y (s)

R(s)
=

(

Kp + Ki

s

)

G(s)
1+Kd

as
s+a

G(s)

1 +
(

Kp + Ki

s

)

G(s)
1+Kd

as
s+a

G(s)

=

(

Kp + Ki

s

)

G(s)

1 + Kd
as

s+a
G(s) +

(

Kp + Ki

s

)

G(s)

=
(s + a) (sKp + Ki)G(s)

s (s + a) + Kd a s2G(s) + (s + a) (Kps + Ki)G(s)

=
(s + a) (sKp + Ki) N(s)

s (s + a)D(s) + Kd a s2N(s) + (s + a) (Kps + Ki)N(s)
.

control signal u(t)

r-to-u has same
poles as filt. PID

As expected, these three transfer functions have the same poles because they come from the same
system. However, they have different zeros because they reflect different outputs.

– The resulting system cannot be tuned easily in rltool.

– Instead, use the transfer functions directly or use Simulink .

– As long as Kp ≤ 5 (i.e., the saturation threshold), these transfer functions will closely model
laboratory behavior.

– Other effects that are not modeled include:

∗ Random measurement and actuator noise (usually negligible).

∗ DAC output quantization error (usually negligible).

∗ Mechanical static friction thresholds (usually negligible due to type-1 controller).

∗ Shaft encoder quantization error (noticeable control spikes — suppress with small a).

– Nonlinear effects are easy to model within Simulink , but they are difficult to handle analyti-
cally. Most of their negative effects are magnified by large choices of a, but small choices of
a reduce effectiveness of “differentiator” (i.e., reduce system damping).

Copyright © 2007–2009 by Theodore P. Pavlic

Creative Commons Attribution-Noncommercial 3.0 License
Page 3 of 4

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

ECE 557 — Lab 7: Tuning a PID Controller Notes

7. Complete the Tuning a PID Controller lab

• Implement PID control for position regulation of DC servo.

– In Simulink , choose two Summers from the Math section of the library.

∗ On one, change |++ to |+- to make it the error summer.

∗ Change the other’s |++ to ++- and shape to Rectangular to make it the PID output.

– Do not use PID block. Use components from Math and Continuous.

∗ Implement Kp with gain.

∗ Implement Ki with gain and integrator.

∗ Implement Kd with gain and transfer function.

· Use transfer function to implement as/(s + a) “derivative+filter.” Set a = 200.

· Wire from output and not error. Control will start far too high otherwise.

· Make sure you subtract eventual result (because we’re wiring from output).

· These modifications slow response, but they make derivative safe and realizable.

– If you wish, wire up a simulated system for comparison. Capture its output as well.

∗ You might relate this to using an observer (a subject of ECE 650 and ECE 750).

• Tune your PID gains for < 2% overshoot and < 0.5 s settling time.

– Initial output magnitude is Kp. If Kp > 5, initial output will be clipped.

– Quantization noise from encoder makes derivative very noisy. Keep Kd very low (Kd < 1).

– Use numeric inputs in ControlDesk for tuning.

⋆ Kp provides control effort and much of rise time/shape (p for proportional? potential/power!).

⋆ Ki reduces error but introduces overshoot and lag (i for integrator? introduce?).

⋆ Kd damps overshoot but introduces error (d for derivative? damping!).

– Save THREE of your iterations.

∗ Only one must fit specifications.

∗ The other two should show your grasp of tuning rules.

– While tuning, recall the similar process in the gain compensation lab. Is PID more flexible?

• You do not need separate controllers for the slow version of system, but keep slow system in mind
when analyzing data in report! (e.g., compare expected slow response to data)

⋆ AT ANY TIME, IF MOTOR STARTS CLICKING VERY QUICKLY, STOP THE EXPERI-
MENT — DISCONNECT THE MOTOR IF NECESSARY!! High-frequency switching can cause
permanent damage! It can be caused by unstable systems (e.g., high gains or positive poles).

⋆ Because the system contributes one integrator and your controller contributes another integra-

tor, you should expect steady-state error to decay.

– Due to controller integrator, the static friction dead zone in motor won’t be as much of a
problem. Error should eventually decay away (until error under ADC LSB threshold).

• Tips:

• Do work out of directory on local hard drive — use as Matlab working directory.

• In Simulink , the hotkey for building a model is Ctrl - B .

• Start dSPACE ControlDesk before doing Simulink builds.

• In Matlab, change Termination settings for DAC block — check box to set 0 V stop value.

• In dSPACE add a simState control.

(i) Wire simState to 2-option radio button — Setup options “Run” (2) and “Stop” (0).

(ii) Set Capture Settings to automatically restart and set capture time to simulation time.

Restart simulation as needed by using simState control (i.e., no need to change modes).

(i) To stop early, change simState to Stop.

(ii) Before restarting, re-initialize Capture Settings by clicking Stop and then Start.

(iii) When you’re ready to start (e.g., after changing gains), set simState to Run.

Copyright © 2007–2009 by Theodore P. Pavlic

Creative Commons Attribution-Noncommercial 3.0 License
Page 4 of 4

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

