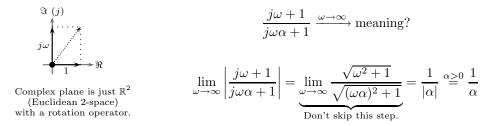
## ECE 557: Control, Signals, and Systems Laboratory

## Notes for Lab 6 (Lead Compensation for Position Control of a DC Servo)

- 1. Return lag compensation pre-lab and give some notes (biggest problem: incorrect gains).
  - Small detail: Don't compare vectors directly; make your 2-norms explicit.



- For LTI feedback problems, use margin in MATLAB instead of bode (helps check your work).
- When lag compensator is for **improving phase margin**, want *unity* **DC** compensator gain.

$$G_{c_{\text{PM}}}(s) = \underbrace{\frac{1}{\alpha} \frac{s+a}{s+b}}_{\text{Pole-zero(-gain)}} = \underbrace{\frac{b}{a} \frac{s+a}{s+b}}_{\text{form}} = \underbrace{\frac{1+\frac{s}{a}}{1+\frac{s}{b}}}_{\text{Natural-frequency}} = \begin{cases} 1 & @ \text{ DC}, \\ \frac{1}{\alpha} & @ \text{ AC} \end{cases} \quad (\alpha > 1, \quad a > b)$$

We attenuate high frequencies for stability margins and less ringing. Make sure implementation has correct gain. It makes sense to use **natural-frequency form** here.

- If you forget the  $1/\alpha$  gain, the additional amplification reduces your desired stability margins.
- In the pre-lab, leaving out the  $1/\alpha$  gain results in no change in phase margin and a decrease in steady-state error.
- Notice the *pole-zero(-gain)* and *natural-frequency* forms of the same transfer function carry different gains.

The  $\alpha$  is a gain. It should *not* be in deciBel units. Solve raw or convert plot deciBels.

- To increase phase margin, design compensator to provide  $\alpha \triangleq 1/G_{\text{plant}}$  gain at some  $\omega_c$ .
- $-G_{c_{\text{PM}}}G_{\text{plant}}$  system will have unity gain at  $\omega_c$  (i.e.,  $1/G_{\text{plant}}(\omega_c) \times G_{\text{plant}}(\omega_c) = 1$ ).
- Pick  $a \ll \omega_c$  so that compensator looks like constant AC gain.
  - $* \ \angle(G_{c_{\mathrm{PM}}}(\omega_c) \, G_{\mathrm{plant}}(\omega_c)) = \angle G_{c_{\mathrm{PM}}}(\omega_c) + \angle G_{\mathrm{plant}}(\omega_c) \approx \angle G_{\mathrm{plant}}(\omega_c).$
  - \* So long as lag compensator concentrates its effect near DC, we only care about its qain.
- When lag compensator is for reducing steady-state error, want unity AC compensator gain.

$$G_{c_{\text{SS}}}(s) = \underbrace{\frac{s+a}{s+b}}_{\text{Pole-zero(-gain)}} = \underbrace{\frac{s+\alpha b}{s+b}}_{\text{Natural-frequency}} = \underbrace{\alpha \frac{1+\frac{s}{\alpha b}}{1+\frac{s}{b}}}_{\text{Natural-frequency}} = \underbrace{\begin{cases} \alpha & \text{@ DC,} \\ 1 & \text{@ AC} \end{cases}}_{\text{Natural-frequency}}$$

We amplify DC (i.e., position error) response to reduce steady-state error. Make sure implementation has correct gain. It makes sense to use the **pole-zero(-gain) form** here.

- The  $\alpha$  is only needed in the *natural frequency form*. Not including it removes any improvement in steady-state error.
- Putting the  $\alpha$  in the pole-zero(-gain) form causes control signal to escape constraints.

Remember to calculate expected steady-state error. Include  $\alpha$ ,  $K_c$ , and  $K_p$ .

$$\widetilde{K}_{p} \triangleq \lim_{s \to 0} \left( G_{c_{\text{SS}}}(s) \, G_{\text{plant}}(s) \right) = G_{c_{\text{SS}}}(0) \, K_{p} = \alpha \, K_{c} \, K_{p} \qquad \text{and} \qquad e_{\text{SS}} = \frac{1}{1 + \widetilde{K}_{p}} = \frac{1}{1 + \alpha \, K_{c} \, K_{p}}$$

Increasing  $K_c$  will decrease  $e_{SS}$ , but it reduces gain margin and increases control effort. The extra boost from pole-zero compensator  $\alpha$  gives steady-state leverage on a small  $K_c$ .



- 2. Return gain compensation lab reports and give some notes.
  - When showing step-response data, change time and data axes to focus on interesting region.
    - No need to show entire capture time.
    - Put some space above data maximum to show you're not cutting anything off.
  - Few people listed pre-lab results for comparison.
    - Given your pre-lab controller designs, it's easy to re-generate your pre-lab data.
    - Compare measured data with expected data. Explain differences.
  - Voltage drives motor *speed*, and *position* is fed back. So steady-state output must have *zero* error.
    - Otherwise motor speed would be nonzero and position would be change (system has type 1).
    - All reports showed *nonzero* steady-state error, but none found that remarkable.
      - \* Quantization? Friction?
      - \* Other reasons why motor would be steady while its input is nonzero?
- 3. Fun math from first part of pre-lab assignment.
  - (a) Unconstrained maximization of phase angle (i.e., use calculus).
    - Let

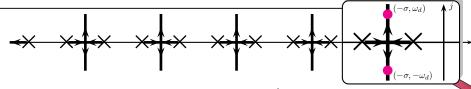
$$f'(\omega) \triangleq \frac{\partial}{\partial \omega} f(\omega)$$
 and  $f''(\omega) \triangleq \frac{\partial^2}{\partial \omega^2} f(\omega)$ .

- If both  $f'(\omega_m) = 0$  and  $f''(\omega_m) < 0$  then  $\omega_m$  must be a maximum of  $f(\omega)$ .
- The sign of  $f''(\omega_m)$  determines whether  $\omega_m$  is a maximum or a minimum.
  - Its sign is negative when a < b (lead case).
  - Its sign is positive when a > b (lag case).

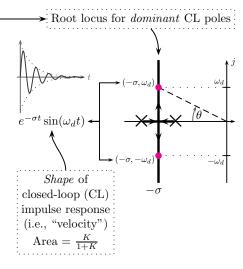
So  $\omega_m = \sqrt{ab}$  also represents frequency of **minimum** phase in lag compensation.

- The expression  $\sqrt{ab}$  is the geometric mean of a and b.
  - Generally, the **geometric mean** of  $x_1, x_2, x_3, \ldots$ , and  $x_n$  is  $\sqrt[n]{x_1 x_2 x_3 \cdots x_n}$ .
  - Compare to the arithmetic mean of  $x_1, x_2, \ldots$ , and  $x_n$ , which is  $(x_1 + x_2 + \cdots + x_n)/n$ .
  - For a list of non-negative real numbers,  $(x_1 + x_2 + \cdots + x_n)/n \ge \sqrt[n]{x_1 x_2 \cdots x_n}$ .
    - \* Equality only occurs when all numbers in the list are the same.
    - \* The AM-GM inequality is a useful tool. Remember it.
- (b) Don't worry; it's bonus.
  - Geometric solution (trigonometric identities sine, tangent, cosine, and triangles):
    - (i) Draw right triangles corresponding to atan(x/1) (i.e.,  $tan^{-1}(x/1)$ ) and atan(1/x).
      - The relationship between these two **angles** should be obvious.
    - (ii) Recall that  $\cos(2x) = 2\cos^2(x) 1$  (think about Fourier transformation of  $\cos^2(x)$ ).
    - (iii) Go back to the triangles to figure out  $\cos(\arctan(x))$ .
  - Algebraic solution:
    - (i) Recall that  $G_c(j\omega_m) = |G_c(j\omega_m)| e^{j\phi_m}$  (and  $e^{j\phi_m} = \cos(\phi_m) + j\sin(\phi_m)$ ).
    - (ii) Equate imaginary parts (recall how to rationalize a denominator).
    - (iii) Solve for  $\sin(\phi_m)$ .
- (c) Going from  $20 \log |G_c|$  to  $-10 \log \alpha$  (not a tpyo...er...typo).
  - Recall that  $\log_{10} \sqrt{x} = \log_{10} x^{0.5} = 0.5 \log_{10} x$ .
    - That's why you start with  $20\log_{10}$  and end up with  $10\log_{10}$ .
  - The quantity  $\sqrt{\alpha}$  can be more useful than  $\alpha$  when designing using a computer.

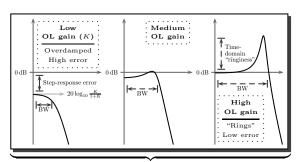
- 4. Gain adjustments on generic all(-real)-pole feedback system: consider root locus.
  - From DC and moving *left*, each *pair* of open-loop poles generates closed-loop poles between them.



- So all closed-loop systems look like cascades of 2<sup>nd</sup>-order systems.
  - \* Closed-loop poles move toward each other and hit a breakaway point between them.
    - · Quadratic formula discriminants determine breakaway point.
    - $\cdot$  All breakaways are initially vertical and then bend away from other asymptotes.
- Dominant characteristics come from slowest pair.
  - \* 2-pole systems (i.e., 2<sup>nd</sup> order models) capture much of richness in behavior.
    - · Similar to approximating motion with position, velocity, and acceleration only.
  - \* Other poles have some influence on position of breakaway and steepness of initial slope.
    - · They have negligible influence if they are sufficiently far away.
- To determine control, focus on slowest (i.e., dominant) pair of open-loop poles.



| Damping ratio $(\zeta) = \cos(\theta)$ |                   |          |                   |              |                   |              |
|----------------------------------------|-------------------|----------|-------------------|--------------|-------------------|--------------|
| OL Gain $(K)$                          |                   | $\theta$ |                   | $DR (\zeta)$ |                   | Phase Margin |
| High                                   | $\Longrightarrow$ | High     | $\Longrightarrow$ | Low          | $\Longrightarrow$ | Low          |
| Medium                                 | $\Longrightarrow$ | Medium   | $\longrightarrow$ | Medium       | $\longrightarrow$ | Medium       |
| Low                                    | $\Longrightarrow$ | Low      | $\Longrightarrow$ | High         | $\Longrightarrow$ | High         |



Closed-loop (CL) frequency-magnitude responses

- The impulse response of the closed-loop system characterizes behavior of transients.
  - \* Increasing open-loop gain increases bandwidth by making damped frequency  $\omega_d$  larger. The system becomes more sensitive to faster signals. Step-response **rise time** decreases.
  - \* Even though rise time decreases, settling time can increase because fast  $\sin(\omega_d t)$  can peak many times before  $e^{-\sigma t}$  decreases significantly. The system "rings" and settles **slowly.**
  - \* The extra "ringiness" corresponds to a low **phase margin**. A small delay will cause instability. So increasing gain moves the system "closer to instability."
  - \* So a fast and robustly stable system needs high gain and high damping ratio  $(\zeta)$ .
- High "ringiness" also brings dangerous control effort and step-response overshoot.
- Designing by adjusting gain **only** means accepting the root locus as it is.
  - \* If we are unhappy with the system characteristics as they are, we must *compensate* for them by adding our own characteristics.
  - \* Compensation corresponds to re-shaping the root locus by moving the breakaway point.
  - \* Lag compensation shifts breakway right to reduce steady-state error without high gain.
  - \* Lead compensation shifts breakaway left to make system settle faster (i.e., damps ringing).
  - \* So compensation increases speed or reduces error without increasing ring.
- PID combines the three effects: (P,I,D) = (bandwidth [gain], reduced error [lag], speed [lead]).

- 5. Complete the Lead Compensation for Position Control of a DC Servo lab
  - Implement lag compensation for velocity regulation of DC servo.
    - In Simulink, the Summing Junction (or sum) component is in the Math section of the library.
      - \* Change the | ++ to | +- to make one of the inputs negative.
    - Use Zero-Pole or Transfer Function from Continuous section of *Simulink* library.
      - \* All poles and zeros are negative! Remember to use the correct form and gains!!
    - If you wish, wire up a simulated system for comparison. Capture its output as well.
      - \* You might relate this to using an observer (a subject of ECE 650 and ECE 750).
  - Start with your Bode-type controller design from the pre-lab (provides 90° phase margin).
    - $\star$  Make sure your design does NOT use  $\alpha$  in deciBels (dB)! (0.4 <  $\alpha$  < 0.6)
    - Gather step response data in dSPACE ControlDesk.
  - Change to your root-locus-type controller design from the pre-lab (improves speed).
    - Gather step response data in dSPACE ControlDesk.
  - You do not need separate controllers for the slow version of system, but keep slow system in mind when analyzing data in report!
  - \* AT ANY TIME, IF MOTOR STARTS CLICKING VERY QUICKLY, STOP THE EXPERI-MENT — DISCONNECT THE MOTOR IF NECESSARY!! High-frequency switching can cause permanent damage! It can be caused by unstable systems (e.g., high gains or positive poles).
  - \* There is no manual tuning in this experiment.
  - ★ Ideally, this type-1 system (i.e., system with one integrator) should have no steady-state error.
    - We are driving output voltage with *position* error.
      - \* Any nonzero voltage should cause the motor to move (i.e., voltage and speed are related).
      - \* If the motor is not moving, its speed is zero, and so the output voltage must be zero.
      - \* Because of *position feedback*, the output voltage is only zero if *position error* is zero.
      - \* So the closed-loop system should have no steady-state error for a step input.
    - Unfortunately, nonlinearities and time variance in the system couple with quantization noise in the DAC and make the system far less than ideal. Unless gain is very high, steady-state error will be nonzero (e.g., motor **stalls** if it doesn't overcome starting friction).
      - \* You can use a digital voltmeter (DVM) to verify motor stalls with small nonzero input.
      - \* So the controller is doing what it *should*, but the motor is not behaving linearly. It has a *dead zone*.

## • Tips:

- Do work out of directory on local hard drive use as MATLAB working directory.
- In Simulink, the hotkey for building a model is Ctrl B.
- Start dSPACE ControlDesk before doing Simulink builds.
- In Matlab, change Termination settings for DAC block check box to set 0 V stop value.
- In dSPACE add a simState control.
  - (i) Wire simState to 2-option radio button Setup options "Run" (2) and "Stop" (0).
  - (ii) Set Capture Settings to automatically restart and set capture time to simulation time.

Restart simulation as needed by using simState control (i.e., no need to change modes).

- (i) To stop early, change simState to Stop.
- (ii) Before restarting, re-initialize Capture Settings by clicking Stop and then Start.
- (iii) When you're ready to start (e.g., after changing gains), set simState to Run.

