
ECE 557: Control, Signals, and Systems Laboratory

Notes for Lab 6 (Lead Compensation for Position Control of a DC Servo)

1. Return lag compensation pre-lab and give some notes (biggest problem: incorrect gains).

• Small detail: Don’t compare vectors directly; make your 2-norms explicit.
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• For LTI feedback problems, use margin in Matlab instead of bode (helps check your work).

• When lag compensator is for improving phase margin, want unity DC compensator gain.
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We attenuate high frequencies for stability margins and less ringing. Make sure implementation
has correct gain. It makes sense to use natural-frequency form here.

– If you forget the 1/α gain, the additional amplification reduces your desired stability margins.

– In the pre-lab, leaving out the 1/α gain results in no change in phase margin and a decrease
in steady-state error.

– Notice the pole-zero(-gain) and natural-frequency forms of the same transfer function carry
different gains.

The α is a gain. It should not be in deciBel units. Solve raw or convert plot deciBels.

– To increase phase margin, design compensator to provide α , 1/Gplant gain at some ωc.

– GcPM
Gplant system will have unity gain at ωc (i.e., 1/Gplant(ωc) × Gplant(ωc) = 1).

– Pick a ≪ ωc so that compensator looks like constant AC gain.

∗ ∠(GcPM
(ωc)Gplant(ωc)) = ∠GcPM

(ωc) + ∠Gplant(ωc) ≈ ∠Gplant(ωc).

∗ So long as lag compensator concentrates its effect near DC, we only care about its gain.

• When lag compensator is for reducing steady-state error, want unity AC compensator gain.
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We amplify DC (i.e., position error) response to reduce steady-state error. Make sure implemen-
tation has correct gain. It makes sense to use the pole-zero(-gain) form here.

– The α is only needed in the natural frequency form. Not including it removes any improvement
in steady-state error.

– Putting the α in the pole-zero(-gain) form causes control signal to escape constraints.

Remember to calculate expected steady-state error. Include α, Kc, and Kp.

K̃p , lim
s→0

(GcSS
(s)Gplant(s)) = GcSS

(0)Kp = α Kc Kp and eSS =
1

1 + K̃p

=
1
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Increasing Kc will decrease eSS, but it reduces gain margin and increases control effort. The extra
boost from pole-zero compensator α gives steady-state leverage on a small Kc.
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ECE 557 — Lab 6: Lead Compensation for Position Control of a DC Servo Notes

2. Return gain compensation lab reports and give some notes.

• When showing step-response data, change time and data axes to focus on interesting region.

– No need to show entire capture time.

– Put some space above data maximum to show you’re not cutting anything off.

• Few people listed pre-lab results for comparison.

– Given your pre-lab controller designs, it’s easy to re-generate your pre-lab data.

– Compare measured data with expected data. Explain differences.

• Voltage drives motor speed, and position is fed back. So steady-state output must have zero error.

– Otherwise motor speed would be nonzero and position would be change (system has type 1).

– All reports showed nonzero steady-state error, but none found that remarkable.

∗ Quantization? Friction?

∗ Other reasons why motor would be steady while its input is nonzero?

3. Fun math from first part of pre-lab assignment.

(a) Unconstrained maximization of phase angle (i.e., use calculus).

• Let

f ′(ω) ,
∂

∂ω
f(ω) and f ′′(ω) ,

∂2

∂ω2
f(ω).

• If both f ′(ωm) = 0 and f ′′(ωm) < 0 then ωm must be a maximum of f(ω).

• The sign of f ′′(ωm) determines whether ωm is a maximum or a minimum.

– Its sign is negative when a < b (lead case).

– Its sign is positive when a > b (lag case).

So ωm =
√

ab also represents frequency of minimum phase in lag compensation.

• The expression
√

ab is the geometric mean of a and b.

– Generally, the geometric mean of x1, x2, x3, . . . , and xn is n
√

x1 x2 x3 · · · xn.

– Compare to the arithmetic mean of x1, x2, . . . , and xn, which is (x1 +x2 + · · ·+xn)/n.

– For a list of non-negative real numbers, (x1 + x2 + · · · + xn)/n ≥ n
√

x1 x2 · · · xn.

∗ Equality only occurs when all numbers in the list are the same.

∗ The AM–GM inequality is a useful tool. Remember it.

(b) Don’t worry; it’s bonus.

• Geometric solution (trigonometric identities — sine, tangent, cosine, and triangles):

(i) Draw right triangles corresponding to atan(x/1) (i.e., tan−1(x/1)) and atan(1/x).

– The relationship between these two angles should be obvious.

(ii) Recall that cos(2x) = 2 cos2(x) − 1 (think about Fourier transformation of cos2(x)).

(iii) Go back to the triangles to figure out cos(atan(x)).

• Algebraic solution:

(i) Recall that Gc(jωm) = |Gc(jωm)| ejφm (and ejφm = cos(φm) + j sin(φm)).

(ii) Equate imaginary parts (recall how to rationalize a denominator).

(iii) Solve for sin(φm).

(c) Going from 20 log |Gc| to −10 logα (not a tpyo. . . er. . . typo).

• Recall that log10

√
x = log10 x0.5 = 0.5 log10 x.

– That’s why you start with 20 log10 and end up with 10 log10.

• The quantity
√

α can be more useful than α when designing using a computer.
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ECE 557 — Lab 6: Lead Compensation for Position Control of a DC Servo Notes

4. Gain adjustments on generic all(-real)-pole feedback system: consider root locus.

• From DC and moving left, each pair of open-loop poles generates closed-loop poles between them.
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– So all closed-loop systems look like cascades of 2nd-order systems.

∗ Closed-loop poles move toward each other and hit a breakaway point between them.

· Quadratic formula discriminants determine breakaway point.

· All breakaways are initially vertical and then bend away from other asymptotes.

– Dominant characteristics come from slowest pair.

∗ 2-pole systems (i.e., 2nd order models) capture much of richness in behavior.

· Similar to approximating motion with position, velocity, and acceleration only.

∗ Other poles have some influence on position of breakaway and steepness of initial slope.

· They have negligible influence if they are sufficiently far away.

• To determine control, focus on slowest (i.e., dominant) pair of open-loop poles.
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︸ ︷︷ ︸
Closed-loop (CL) frequency-magnitude responses

– The impulse response of the closed-loop system characterizes behavior of transients.

∗ Increasing open-loop gain increases bandwidth by making damped frequency ωd larger.
The system becomes more sensitive to faster signals. Step-response rise time decreases.

∗ Even though rise time decreases, settling time can increase because fast sin(ωdt) can peak
many times before e−σt decreases significantly. The system “rings” and settles slowly.

∗ The extra “ringiness” corresponds to a low phase margin. A small delay will cause
instability. So increasing gain moves the system “closer to instability.”

∗ So a fast and robustly stable system needs high gain and high damping ratio (ζ).

– High “ringiness” also brings dangerous control effort and step-response overshoot.

– Designing by adjusting gain only means accepting the root locus as it is.

∗ If we are unhappy with the system characteristics as they are, we must compensate for
them by adding our own characteristics.

∗ Compensation corresponds to re-shaping the root locus by moving the breakaway point.

∗ Lag compensation shifts breakway right to reduce steady-state error without high gain.

∗ Lead compensation shifts breakaway left to make system settle faster (i.e., damps ringing).

∗ So compensation increases speed or reduces error without increasing ring.

– PID combines the three effects: (P,I,D) = (bandwidth [gain], reduced error [lag], speed [lead]).

Copyright © 2007–2009 by Theodore P. Pavlic

Creative Commons Attribution-Noncommercial 3.0 License
Page 3 of 4

http://en.wikipedia.org/wiki/PID_controller
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/


ECE 557 — Lab 6: Lead Compensation for Position Control of a DC Servo Notes

5. Complete the Lead Compensation for Position Control of a DC Servo lab

• Implement lag compensation for velocity regulation of DC servo.

– In Simulink , the Summing Junction (or sum) component is in the Math section of the library.

∗ Change the |++ to |+- to make one of the inputs negative.

– Use Zero-Pole or Transfer Function from Continuous section of Simulink library.

∗ All poles and zeros are negative! Remember to use the correct form and gains!!

– If you wish, wire up a simulated system for comparison. Capture its output as well.

∗ You might relate this to using an observer (a subject of ECE 650 and ECE 750).

• Start with your Bode-type controller design from the pre-lab (provides 90◦ phase margin).

⋆ Make sure your design does NOT use α in deciBels (dB)! (0.4 < α < 0.6)

– Gather step response data in dSPACE ControlDesk .

• Change to your root-locus-type controller design from the pre-lab (improves speed).

– Gather step response data in dSPACE ControlDesk .

• You do not need separate controllers for the slow version of system, but keep slow system in mind
when analyzing data in report!

⋆ AT ANY TIME, IF MOTOR STARTS CLICKING VERY QUICKLY, STOP THE EXPERI-
MENT — DISCONNECT THE MOTOR IF NECESSARY!! High-frequency switching can cause
permanent damage! It can be caused by unstable systems (e.g., high gains or positive poles).

⋆ There is no manual tuning in this experiment.

⋆ Ideally, this type-1 system (i.e., system with one integrator) should have no steady-state error.

– We are driving output voltage with position error.

∗ Any nonzero voltage should cause the motor to move (i.e., voltage and speed are related).

∗ If the motor is not moving, its speed is zero, and so the output voltage must be zero.

∗ Because of position feedback, the output voltage is only zero if position error is zero.

∗ So the closed-loop system should have no steady-state error for a step input.

– Unfortunately, nonlinearities and time variance in the system couple with quantization noise
in the DAC and make the system far less than ideal. Unless gain is very high, steady-state
error will be nonzero (e.g., motor stalls if it doesn’t overcome starting friction).

∗ You can use a digital voltmeter (DVM) to verify motor stalls with small nonzero input.

∗ So the controller is doing what it should, but the motor is not behaving linearly. It has a
dead zone.

• Tips:

• Do work out of directory on local hard drive — use as Matlab working directory.

• In Simulink , the hotkey for building a model is Ctrl - B .

• Start dSPACE ControlDesk before doing Simulink builds.

• In Matlab, change Termination settings for DAC block — check box to set 0 V stop value.

• In dSPACE add a simState control.

(i) Wire simState to 2-option radio button — Setup options “Run” ( 2 ) and “Stop” ( 0 ).

(ii) Set Capture Settings to automatically restart and set capture time to simulation time.

Restart simulation as needed by using simState control (i.e., no need to change modes).

(i) To stop early, change simState to Stop.

(ii) Before restarting, re-initialize Capture Settings by clicking Stop and then Start.

(iii) When you’re ready to start (e.g., after changing gains), set simState to Run.
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