
ECE 557: Control, Signals, and Systems Laboratory

Notes for Lab 2 (Introduction to Digital Signal Processing)

1. Overview: Sampling, Quantization, Filtering, Reconstruction

In Sampler
Quantizer
(Coder)

DSP
Reconstruction
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Out

The signal x(t) = e−0.1t cos(2π0.1t) is sampled at 5 Hz. The resulting samples are x[k] , x(k/5) =
e−0.02k cos(2π0.02k). Those samples are quantized for processing by a 3-bit DSP.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

Time (s)

D
at

a

Quantized (“Digital”) Samples of Continuous-Time Signal

 

 

Continuous-Time
Discrete-Time Samples
3-bit Quantized Samples
3-bit Quantization Levels

Ideally, the discrete-time signal is filtered so that y[k] = 1.2x[k−2]−0.2y[k−2], but due to quantization
for every operation, the output is less than ideal.
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(Here, “perfect” reconstruction uses sinc interpolation.)
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ECE 557 — Lab 2: Introduction to Digital Signal Processing Notes

2. What happens when sampling every T seconds?

• Sampling multiplies a time-domain signal by a pulse train.

– Multiplication in the time domain is convolution in the frequency domain.

– A pulse train separated by T s in the time-domain corresponds to a pulse train separated by
1/T Hz in the frequency domain.

– Convolution by an impulse corresponds to shifting.

– So sampling copies a baseband signal to an ∞ windows centered at 1/T Hz multiples.

• So sampling a signal creates ambiguity. Notice how samples intersect multiple sine waves.
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• To properly reconstruct, apply a bandpass filter to the half window you want.

−3fs −2fs −fs 0 fs 2fs 3fs −3fs −2fs −fs 0 fs 2fs2fs 3fs

−3fs −2fs −fs 0 fs 2fs 3fs

Consider snapshots of a wagon wheel (e.g., from a camera or jittering of the eye). They can be
reconstructed forward and backwards at different speeds. Our eyes and brain may automatically
choose the baseband image, but with concentration, the other images are possible.

• The band-limited signal must fit within a single half window — it cannot overlap two half windows
(Shannon–Nyquist Sampling Theorem). Constraints are independent of the “highest frequency.”

−3fs −2fs −fs 0 fs 2fs 3fs −3fs −2fs −fs 0 fs 2fs 3fs

−3fs −2fs −fs 0 fs 2fs 3fs
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ECE 557 — Lab 2: Introduction to Digital Signal Processing Notes

3. The old s-domain and the new z-domain.

• In continuous time, signals can be built out of sums (or integrals) of terms of the form Aest where
s is a complex number of the form σ + jω.

– For example, the damped sinusoid 2e−5t cos(ωt) = e(−5+jω)t +e(−5−jω)t = e−5t(ejωt +e−jωt).

– Linear-time-invariant (LTI) differential equations have the special property that lets us ana-
lyze individual components of signals separately and add them later.

– Conveniently, differentiating functions like Aest is equivalent to scaling them by s, and est 6= 0.

– Consider the LTI equation y′ + y = x′.

∗ Solving for y when y′ + y = 0 gives us the behavior for no input.

· Let y(t) = Aest, which means s + 1 = 0.

· So y(t) = e−t is the solution, and because s < 0, it eventually dies out.

· Because the natural response of the signal dies out, the system is stable.

∗ Similarly, input signals that have x′ = 0 have no impact on the system output.

· Let x(t) = Aest and solve for s.

· As expected, solution is s = 0 (i.e., x(t) is constant), and so constant inputs are ignored.

· These are the “zero dynamics” of the system.

∗ So long as the system is stable, we can assume y(t) = Best and x(t) = Aest and solve for
transfer function B/A to get s/(s + 1).

· Using the complex plane as the floor, the transfer function’s magnitude is like a tent.

· The tent is held up by its “poles” and pinned down by its “zeros.”

· An LTI system can be completely characterized by sampling its response to a sinusoids
of varying frequencies. This data can be put into a Bode plot.

· The Bode plot is the shape of the tent along the imaginary axis from DC to ∞.

• In discrete time, signals are sampled every T time so that x[k] , x(kT ).

– So substitute t = kT into the prototypical Aest to get AesTk or Azk where z , esT .

– Conveniently, iterating from x[k] to x[k + 1] is equivalent to scaling by z.

∗ If x[k] = Azk, then x[k + 1] = Azk+1 = Azkz = z x[k].

– Consider the LTI difference equation y[k + 1]− 0.5y[k] = x[k + 1]− x[k].

∗ Solve for y[k] when there is no input.

· Let y[k] = Azk, which means z − 0.5 = 0.

· So y[k] = 0.5k is the solution, and because |z| < 1, it eventually dies out.

· Because the natural response dies out, the system is stable.

∗ Similarly, input signals with x[k + 1]− x[k] = 0 have no impact on system output.

· Letting x[k] = Azk, we find z = 1.

· So all constant signals are ignored.

· These are the “zero dynamics” of the system.

∗ Because the system is stable, let y[k] = Bzk and x[k] = Azk.

· Transfer function B/A is (z − 1)/(z − 0.5).

· Again, use the tent analogy with “poles” pulling up and “zeros” pulling down.

· Here, the Bode plot traces the CIRCULAR path from DC (z = 1) to 0.5fs (z = −1).
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ECE 557 — Lab 2: Introduction to Digital Signal Processing Notes

4. Reconstruction (*-order hold, etc.)

• DSP-filtered signal exists abstractly as impulses. How to convert to continuous-time?
Must somehow interpolate between points. Two common choices:

k k + 1 k + 2

x[k]

x[k + 1]

x[k + 2]

Zero-Order Hold

k k + 1 k + 2

x[k]

x[k + 1]

x[k + 2]

First-Order Hold

• What is the impact in continuous-time? How do we convert filters from z to s and back?

– Need s↔ f(z) close to z = esT with polynomial-ratio transfer functions in z and s.

– One strategy (there are many) is to make sure integration (i.e., 1/s) behavior is consistent.

– To integrate, at each step, the cross-hatched area must be added to the previous sum.

∗ The area at time k + 1 under zero-order held rectangles (i.e., forward rectangles) is

y[k + 1] = y[k] + Tx[k].

So this discrete-time integrator has transfer function T/(z−1). Because a continuous-time
integrator is 1/s, we substitute

s ←→
z − 1

T
and z ←→ Ts + 1.

· This “forward rectangular” transformation is linear (actually, it’s affine).

· This transformation maps s ≤ 0 plane to the z ≤ 1 plane (i.e., not just |z| < 1 circle).

· Consequently, all stable z-domain filters have stable s-domain approximations,

but many s-domain filters do NOT have stable z-domain approximations.

· By increasing sampling rate (i.e., decreasing T ), more stable s-domain poles get mapped
inside the stable z-domain unit circle.

∗ The area at time k + 1 under first-order held trapezoids is

y[k + 1] = y[k] +
T

2
(x[k + 1] + x[k]) ,

which has transfer function (T/2)(z + 1)/(z − 1). Matching to 1/s, we substitute

s ←→
2

T

z − 1

z + 1
and z ←→

2 + sT

2− sT
.

· This trapezoid rule is a ratio of two linear maps; it is a “bilinear transformation.”

· This bilinear transformation wraps the entire continuous-time frequency range (i.e.,
from −∞ to ∞) to the discrete-time unit circle.

· Consequently, all stable s-domain poles are mapped to stable z-domain poles.

· In fact, the entire left-hand s-plane is mapped to the inside of the unit circle.

· So stable s-domain filters will have stable z-domain approximations (and vice versa).

· However, s-domain frequency response can be severely distorted at high frequencies
from wrapping an infinite line around a single circle.

· Increasing sampling frequency (i.e., decreasing T ) increases size of low-distortion region.

· It is also called “Tustin’s approximation.”
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ECE 557 — Lab 2: Introduction to Digital Signal Processing Notes

5. Quantization

• Quantization both distorts a signal and adds noise. Because these two effects are not separable,
the terms quantization noise and quantization distortion are often used interchangeably.

• Quantization distortion refers to the sharp edges added to signals. These sharp edges introduce
new high frequency harmonics into the signal. Contrast the feel of a knob that can rotate contin-
uously with a knob that “clicks” from one fixed position to another; the latter effect is noticeable,
distinct, and possibly undesirable.

• Quantization also acts like a noise source that covers up small characteristics of a signal. The
smallest change possible for a quantized signal is known as its least-significant bit (LSB), which is

V

2B

where V is the full-scale range of a signal (e.g., 2 for a standard sinusoid that swings from −1 to
1) and B is the number of bits. Sub-LSB characteristics of this signal are lost after quantization.
It is as if random noise was added to the signal — small changes are lost in uncertainty.
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The signal-to-noise ratio (SNR) is the ratio of signal power to noise power, and it is usually
expressed in deciBels (dB). We can estimate the noise power from quantization as 1 square LSB.
So a good worst-case approximation of the SNR due to quantization is

10 log10

V 2

(

V
2B

)2 = 20 log10

1
1

2B

= B × 20 log10 2 ≈ B × 6 dB.

For each extra bit, the quantization noise gets cut in half, and so the SNR increases by 6 dB.

• Modern analog-to-digital converters can shape quantization noise through dither or Σ-∆ methods.

– These methods greatly oversample so that the quantizer gets multiple “looks” at each sample.
To oversample is to sample MUCH higher than is theoretically needed.

– When a single sample falls between two quantization levels, the quantizer randomly chooses
the upper or lower boundary. However, the probability of choosing either boundary increases
as the distance to the boundary decreases (i.e., a value very close to one quantization level
will often be given that level).

∗ If the signal is SLOWLY changing, simply averaging the quantized output will recover
it exactly. If oversampling is fast enough, this averaging may occur through the natural
low-pass filters present in nature and no additional hardware will be needed.

∗ Unfortunately, if the signal is QUICKLY changing, the sampler will not get many “looks”
at each part of it, and the added noise will actually make it HARDER to recover. So it
is important to GREATLY oversample.

∗ So these methods actually SHAPE the quantization noise so that its SMALLER at low
frequencies and higher at high frequencies.

– These methods are so successful that 1-bit quantizers are usually all that is needed so long as
the sampling is fast enough. These 1-bit quantizers are easy to implement (i.e., very cheap).
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ECE 557 — Lab 2: Introduction to Digital Signal Processing Notes

6. Complete the Introduction to Digital Signal Processing lab

• In each task of the lab, you

1. Generate a triangle wave or a sine wave at a specified frequency.

2. Acquire it with the DSP’s (12-bit) ADC.

3. Sample the acquired signal at specified rate.

4. Generate a continuous-time signal from the discrete-time one using a zero-order hold (ZOH).

5. View the resulting signal in dSPACE ControlDesk.

As you complete the lab,

– Keep the Shannon–Nyquist theorem (e.g., aliasing effects) in mind.

– Keep the different interpolation techniques (e.g., forward rectangular, Tustin) in mind.

– Consider how a DSP can control a plant in response to feedback and reference signals.

– Consider the negative effect of quantization on digital signal processing.

• At several times, you will change the sampling rate of the zero-order hold device.

– You can ALWAYS keep your fixed-step simulation time at 0.1 ms (i.e., 0.0001 s).

• The lab manual instructs you to use an external function generator.

– Use the BNC-to-RCA cable at your bench to connect the function generator to the ADC
input on the dSPACE interface card.

– Alternatively, you may use the Triangle Wave component in the ECE 557 Simulink library.

1. Wire component to a Saturation block with 5 V limits.

2. Wire saturation output to gain of 1/10.

3. Wire gain to DAC output.

4. Loop back DAC output port to ADC input port on interface card.

5. The frequency can be adjusted within dSPACE using a numeric control.

These steps cause the DSP to generate its own triangle wave. MAKE SURE your fixed-
step simulation time is NO GREATER than 1 ms. A simulation time of 0.1 ms is sufficient.

The standard Sine Wave source in Simulink can be used in a similar fashion.

• You may use Simulink’s ZOH block, but the sampling period cannot be modified within dSPACE.

– Alternatively, use the Sample and Hold block from the ECE 557 library.

– Its sampling frequency can be adjusted within dSPACE using a numeric control.

• IF ANY of the custom ECE 557 library blocks are used, go to

Simulation → Configuration Parameters → RTI variable description

and turn on Include mask and workspace parameters and save and build your model. This change
makes it easier to modify the Triangle Wave and Sample and Hold frequencies within dSPACE.

• Tips:

– Do work out of directory on local hard drive — use as Matlab working directory.

– In Simulink, the hotkey for building a model is Ctrl - B .

– Start dSPACE ControlDesk before doing Simulink builds.

– In dSPACE ControlDesk,

1. Wire simState to 2-option radio button.

2. Label one option Run and give value 2.

3. Label other option Stop and give value 0.

4. Set Capture Settings to automatically repeat runs and use stop time of 10 s.

Then settings can be changed without restarting.

∗ Use radio button to start simulation and pause if needed.

∗ To modify numeric inputs, press Enter / ←֓ to commit changes (i.e., don’t click away).
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