Lab 0: Introduction to $\ensuremath{\mathbb{I}}\xspace{-1.5mu}{T_{\ensuremath{\mathbb{E}}\xspace{-1.5mu}{X}}} X$

ECE 327 — Tuesday, 8:30 — T. Pavlic (instructor)

Sally She

Henry He Joe Schmoe

Bench 4

July 15, 2009

1 Introduction

The procedure can be found in section 2. Measurements can be found in section 3 and theory can be found in section 4.

The procedure can be found in section 2. Measurements can be found in section 3 and theory can be found in section 4.

2 Procedure

A picture of the circuit can be found in Figure 2.1.

A cool graphic would be here. Instead, you get a framed box.

Figure 2.1: Some figure.

3 Measurements

Measurements can be found in Table 3.1.

Frequency	Gain	Phase Shift
10 Hz	5	0.01 radians
20 Hz	5	0.1 radians
1000 Hz	2	$1.5 \mathrm{radians}$

Table 3.1: Some data.

4 Theory

The average power over period ${\cal T}$

$$A_v = \frac{1}{T} \int_0^T v(t)^2 dt,$$

(4.1)

and so

By Equation (4.1), $P_v < 10$.

We can do Greek letters too, like α , β , γ , δ , ε , and others. For example,

 $\pi \approx 3.141592653589793 \cdots$.

 $P_v = 4.$

Acknowledgments

Some acknowledgments would go here if necessary.