Notes for Lab 7 (Output Filtering/Project Integration Lab)

- 1. Output filtering
 - Remove higher harmonics from PWM demodulator's pulse-amplitude-modulated output to recover "smooth" reconstruction of input
 - Butterworth low-pass filter
 - Butterworth filter has maximally flat passband response (like a boring "graphic equalizer")
 - $\ast\,$ Slow roll-off, but hard "knee" at $-3\,\mathrm{dB}$ breakpoint corner frequency
 - $\cdot\,$ Can get faster roll-off with higher order
 - * In reality, component variations place ripples in passband
 - $\cdot\,$ Other filters have ripples by design, but give steep roll-off at low order
 - Group delay/Phase delay
 - * "Shape" of a wave is the result of summing a "group" of sinusoids
 - * Can make a square wave look triangular by changing relative phase of harmonics
 - * "Linear-phase" response leads to shape integrity
 - · Every frequency sees same time delay
 - · Result: "Group" appears to be delayed
 - $\cdot\,$ Constant "group delay" of envelope = constant "phase delay" of harmonics
 - · True linear phase possible with DSP (ECE 600)
 - * "Nonlinear-phase" leads to "phase distortion" (i.e., group shape changes)
 - · Crossover in speakers (e.g., tweeter and woofer off by 180°); church acoustics; etc.
 - · Some acoustic phase distortion expected (position effects) or not noticeable to ear
 - · Phase distortion demodulates to amplitude distortion for FM, PM, PWM, etc.
 - * Butterworth have fairly constant group delay far below corner frequency
 - · Frequencies near corner have frequency-dependent delay (compare with Bessel)
 - $\cdot\,$ In lab, 10 kHz test signal has residual modulation harmonics that add out of phase
 - $\cdot\,$ Not a concern in this for-human-ear application
 - Implementation: Sallen-and-Key Filter (SKF) topology
 - How to get a hard Butterworth knee?
 - $\ast\,$ Begin with cascade of two RC voltage dividers
 - $\cdot\,$ Second divider loads first divider; response is degraded
 - * Add buffer between dividers so that first-order transfer functions multiply
 - · High frequency response looks good, but knee is softer $(p^2$
 - * Use an RLC filter
 - · Inductors suck
 - $\ast\,$ Use an *active* filter to get sharpness of RLC without an *actual* L
 - SKF bootstraps cascaded filter output
 - (i) Start with two cascaded RC filters PLUS output buffer
 - (ii) Reconnect first filter ground to buffer output
 - (iii) Sharper response means Butterworth implementation is now possible

- 2. Speaker driver
 - 0.25 W output means 2 V peak (procedure document explains why; also explains RMS)
 - At full-scale, we're already at 3 V peak (i.e., no amplification *necessary*)
 - $-\,$ Add voltage gain of 2 $\,$
 - $\ast\,$ Will overdrive full-scale signals
 - * Will ensure audible output for small signals
 - Use LSA circuit with gain of 2 and a pole for additional smoothing
 - Need current amplifier to drive $8\,\Omega$ speaker load
 - \star Despite its looks, circuit is SIMPLE when broken into its parts
 - (i) Begin with Class-B push–pull amplifier
 - (ii) To remove *crossover distortion*, add biasing diodes for Class-AB operation
 - (iii) To reduce push-pull base current, implement transistors as Sziklai pairs
 - Sziklai pairs are like Darlington pairs
 - Darlington pair has two transistors of the same type with shared collectors
 - $\ast\,$ Use one transistor to "control" the base of another transistor
 - * Acts like "big" transistor with β^2 current gain
 - $\ast\,$ Has twice the base–emitter drop
 - Sziklai pair uses two transistors of different types
 - * Again, like "big" transistor (of "master" type) with β^2 gain
 - * Normal base–emitter drop (i.e., not doubled)
 - (iv) Replace biasing diodes with "Rubber diode"/"Rubber Zener"
 - Shifts output offset
 - Allows tuning to ensure no class-B crossover distortion
 - (v) Add emitter–follower to drive biasing circuit
 - Stiff biasing circuit requires high current
 - Also reduces input-output offset
 - (vi) Add emitter resistors to reduce thermal runaway
 - (vii) Wrap amplifier in negative voltage feedback
 - Removes any output offset
 - Improves linearity
 - Can use separate feedback circuit or build current amplifier into voltage amplifier
 - (viii) Finally, capacitively couple speaker to output
 - Output has 5 V_{DC} offset that should *not* be placed across speaker
 - Dual rails would have allowed a direct connection
 - $\ast\,$ Output offset would have been $0\,V_{\rm DC}$
 - * Negative rail can be produced by DC-to-DC switcher
 - $\ast~Input$ capacitor on both LSAs could be removed too

- 3. Parts in the lab
 - NO CALCULATIONS are required. Component values are given (with explanations).
 - To help ensure component availability, different sets of components are given.
 - Use low-leakage BiMOS (MOS input, BJT gain, CMOS push–pull output) CA3160 operational amplifier for BUFFER.
 - If CA3160 is not available, use CA3130 with 45–100 pF (e.g., 68 pF) from pin 1 to pin 8 (for feedback stability compensation).
 - Use LM741 or LF351 operational amplifiers for filtering.
 - DO NOT install speaker without SEEING ME FIRST.
 - A large electrolytic capacitor is required for AC coupling amplifier output (5 V average) to speaker (0 V average).
- 4. Laboratory experience
 - Make use of **bypass capacitors** at *supply pins* to reduce output noise.
 - When taking plots, save as CSV or BMP
 - Saving as BMP prevents extra work, but make sure scope plots show all required information
 - * Intervals between horizontal and vertical divisions should be clear
 - $\ast\,$ In most cases, channel grounds should be shown
 - * Channels should be labeled in report (e.g., "top waveform is input")
 - If saving as CSV, be sure to...
 - * Label axes and show units
 - * Identify waveforms (e.g., "input" and "output")
 - See pin-out handout
 - Follow lab *book* procedures
 - Handout gives detailed instructions.
 - * Procedure pages have been marked in TOC with (*).
 - * Additional pages given for explanation.
 - * Bonus credit is available if time permits.
 - DO NOT use class-AB amplifier components from book!
 - * Use design given in supplementary text.
 - If you finish, restore components TO THE CABINET!
 - $\ast\,$ Do ${\bf NOT}$ place them in the metal tin at your table!
- 5. Laboratory reports
 - Answer all questions and provide all plots from lab procedures in lab text
 - Include ALL PLOTS from procedure (even if they aren't mentioned in book)
 - USE the plots in your discussion
 - Consider answering some of the questions from the procedure
 - As usual, LAB REPORT due a week after lab COMPLETION