For the digital-to-analog conversion (DAC) lab, we need to implement a ramp generator (again). In this document, we review ramp generators each built with a pnp BJT current source.

Contents

<table>
<thead>
<tr>
<th>1</th>
<th>Resistor-Biased Ramp Generator</th>
<th>2</th>
<th>Diode-Biased Ramp Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Parts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Resistor-Biased Ramp Generator

![Resistor-Biased pnp BJT (e.g., 2N3906) ramp generator (0–8.5 V compliance).](image)

Use C and the desired v'_out to set i. Use i to pick v_B and R_E. Use v_B to pick R_1 and R_2. From Figure 1.1:

- $i = C v'_\text{out}$
- $8.05 \text{ V} < v_B < 9.35 \text{ V}$
- $v_{BE} \approx \frac{9.35 \text{ V} - v_B}{i} = R_E$
- $v_B \approx \frac{R_2}{R_1 + R_2} 10 \text{ V}$

- Due to parasitic resistances, choosing C trades off ramp linearity for reset steepness.
- **MAKE** the R_1–R_2 divider a **POTENTIOMETER** for tuning.
- **For best results**, use $R_1 \parallel R_2 \ll \beta R_E$ where $\beta \approx 100$ and $R_1 \parallel R_2 \triangleq R_1 R_2 / (R_1 + R_2)$.

Abstract

For the digital-to-analog conversion (DAC) lab, we need to implement a ramp generator (again). In this document, we review ramp generators each built with a pnp BJT current source.
2 Diode-Biased Ramp Generator

![Diode-biased pnp BJT (e.g., 2N3906) ramp generator (0–8.65 V compliance).](image)

Use C and the desired v'_{out} to set i. Use i to pick R_E. From Figure 2.1:

\[i = C v'_{\text{out}} \]

\[\frac{v_{R_E}}{i} = \frac{1.15 \text{ V}}{i} = R_E \]

- Due to parasitic resistances, choosing C trades off ramp linearity for reset steepness.
- MAKE the R_E resistor a **variable resistor** (i.e., two adjacent pins of a potentiometer) for tuning.
A Parts

(a) CD4066 solid-state switch

(b) 2N3906 PNP BJT transistor

(c) 1N914 silicon diode (generic small-signal diode)

Figure A.1: Part pin-outs.