Notes for Lab 5 (Analog-to-Digital Converter (ADC) Lab)

1. This is *not* a lab on analog-to-digital conversion

- For a signal to be *digital*, it must have both a discrete (i.e., *countable*) domain (e.g., time) and range (e.g., values). Additionally, its range must be *finite*. Recall that you can use the *digits* of your hands (i.e., your *fingers*) to *count* a *finite* number of items.
 - Discrete-time analog signals can be generated by *sampling* continuous-time analog signals.
 - * Each sample can have a *continuous* range of values.
 - * For slow signals, sampling is *error free*.
 - A digital signal can be generated by *quantizing* (or *quantumizing*) each sample of a discrete-time analog signal.
 - * A quantizer (or quantumizer) can only produce a finite number of outputs (e.g., 0–255).
 - \cdot The outputs are called *codes*.
 - \cdot So a quantizer encodes data.
 - $\cdot\,$ The resolution of the quantizer is the number of possible output values.
 - * An analog-to-digital converter (ADC) is a quantizer.
 - $\cdot\,$ When designing ADCs, for a single $\mathit{cost},$ there is a speed–resolution tradeoff.
 - * A digital signal is an *estimate* of an analog signal, so it is subject to *estimation error*.
- Nyquist–Shannon *sampling* theorem
 - An analog signal that is sampled at *constant* intervals can be *accurately reconstructed* so long as the *range* of frequencies in the signal is small enough.
 - Sampling frequency must be *twice* the *bandwidth* of the signal.
 - To reconstruct original signal, *sinc interpolation* is used to fill-in time between samples.
 - This classical result has been used by *analog* engineers for years to do lots of useful things.
 - You should NOT associate "Nyquist" and "digital" in your head.
- Quantization noise floor
 - Quantization has two negative effects (that are really the same single effect).
 - (i) It limits the *dynamic range* (i.e., the maximum/minimum signal ratio) of signals.
 - * To encode a signal that can be large, small variations (even if they are slow) will be lost completely.
 - (ii) It introduces quantization (or quantumization) noise and distortion.
 - * It gives a continuous *range* of inputs a *single* identity (*round-off error*).
 - So quantization creates a *noise floor*. Characteristics smaller than "1 LSB" are lost.
 - * "LSB" = "Least Significant Bit" = |input range|/resolution
 - * Increase resolution to decrease LSB
 - Quantization noise *spectrum* can be *shaped* using *dither*.
 - * When quantizing a value between two outputs, randomly choose to round up or down based on how close the value is to the nearest output.
 - $\ast\,$ For example, for outputs "0" and "1", encode "0.75" as "1" 75% of the time and "0" 25% of the time.
 - * Reconstruction will involve a low-pass filter that will have an *averaging* effect.
 - * Averaging effect *tilts* noise floor lower at low frequencies and higher at high frequencies.
 - Slow-changing signals have near-constant values that hit lots of sequential samples, so they get reconstructed perfectly.
 - $\cdot\,$ Fast-changing signals have values that only get one sample, which is now extra noisy. So reconstruction is bad.

- * Amount of "tilt" is determined by sampling, so oversample too.
- * 2D visual example (replace "time" with "space"): Red-to-white color gradient
 - $\cdot\,$ Discrete-time analog signal still shows "pink" in the middle.
 - · 1-bit quantization (i.e., *resolve* signal into 2 values) shows red half and white half.
 - $\cdot\,$ 1-bit quantization with dither (and plenty of sampling) has "pixels." Pixels in middle are interlaced 50% red and 50% white. Eye filters them and sees pink.
- * Dithered ADCs that oversample have high *signal-to-noise-and-distortion (SINAD)*, which gives them resolutions with high *effective number of bits (ENOB)*.
- Dithering methods
 - $\ast\,$ Add 1 LSB of uniform white noise to signal and always round resulting signal up.
 - $\cdot\,$ Values between two codes will be evenly balanced.
 - $\cdot\,$ Values closer to one code will have more conversions favoring that code.
 - * Sigma-Delta (SD, $\Sigma\Delta$, Delta-Sigma, or $\Delta\Sigma$) conversion pulse **density** modulation (PDM)
 - · Picture non-inverting op amp buffer (i.e., output shorted to inverting (-) input).
 - $\cdot\,$ Before feeding back output, insert clocked D flip–flop that outputs op amp rails.
 - · Negative feedback will cause average flip-flop (1-bit ADC) output to track the input.
 - $\cdot\,$ Counting output density (i.e., fraction of high outputs in a period of time) gives dithered conversion.
 - $\cdot\,$ Devices are **cheap** to make a 1-bit flash ADC is a simple comparator.
- Precision DMM's (i.e., > 6 digits) use Σ - Δ ADCs
 - * Their inputs are slow (e.g., battery voltages).
 - * For these slow inputs, they have fast conversion and very low quantization noise.
 - * Precision DMM's are analog masterpieces.
- 2. The magic of pulses not limited to just Σ - Δ ADCs (note: same magic is behind "Class-D" amplifiers)
 - A *pulse* is a rapid change in a signal from one value to another.
 - For signals made entirely of pulses, time between two pulses is the "pulse width" of first pulse.
 - Discrete values are easy to generate, detect, and store.
 - Switches dissipate no power $(i = 0 \text{ or } v = 0 \text{ so } i \times v = 0)$.
 - * A signal consisting of only high and low rail values can be generated with no dissipation.
 - * Compare to analog amplifier that balances dissipation to move output.
 - Easy to detect "high" or "low" even with noise.
 - Easy to store (and read) "high" or "low" (e.g., "pits" and "lands" on CDs).
 - Continuous values can still be stored in time (e.g., widths of pulses).
 - Use "1-bit" resolution, detect *fast transitions*, and send continuous samples as *durations*.
 - * Usually noise and distortion has a bigger impact on *value* than *time*.
 - Can convert to digital by *counting*. Resolution set by *clock*, and so it's programmable.
 - Examples: Flashlight communication from earth to mars; storing information on a CD

- 3. Today's lab: Transmission of analog signal via pulse widths
 - Pulse width modulation (PWM)
 - Transmitter pulses output high and low.
 - *Time* between a high and a low transition represents the *height* of a sample.
 - So each *pulse width* communicates a single *sample* of the signal.
 - Value-to-duration conversion is *modulation*. Duration-to-value conversion is *demodulation*.
 - A device that does both is a modem (i.e., a "mod"-"dem").
 - The output of this lab (the *modulator*) is an electrical signal.
 - That signal will drive an infrared transmitter so that we can communicate over the air (i.e., air as *communication channel*).
 - * We will build this "IR-link" next week.
 - That signal *could* drive a CD burner so that we can communicate over CD (i.e., CD as communication channel).
 - The actual communication channel is *arbitrary*.
 - Ideal implementation with comparator
 - Place signal at one input and *comparison function* at the other
 - Comparison function converts values to durations (i.e., time)
 - * Sweeps through entire input range
 - $\cdot\,$ Output pulses (switches) when inputs cross
 - \cdot Intervals between samples are not constant (Nyquist implications?)
 - * Several popular comparison functions
 - \cdot 555 datasheet uses decaying exponential (easy to generate from RC charging)
 - \cdot Triangle wave is harder to generate, but is demodulated cleanly with low-pass filter
 - We use sawtooth-like ramp train (tradeoff) current source and capacitor (i = Cv')
- 4. Infrared link, hysteresis, and design constraints
 - Infrared signals are small and noisy
 - A simple infrared receiver will see many false transitions
 - Filter the output to make the transitions smooth
 - Use Schmitt trigger to toggle output only after smooth output reaches threshold
 - Hysteresis effect: transfer function depends on current state/history
 - So pulses must have $6 \mu s$ between them to be detected; otherwise, trigger holds output constant
- 5. Our pulse-width modulator's parts:
 - (i) Level-shifter amplifier with $\times 3$ gain and $5 V_{\rm DC}$ offset
 - Continuous-time Input: Signal between -1 V and 1 V with $0 V_{DC}$ offset
 - $\bullet\,$ Output sits between $2\,\mathrm{V}$ and $8\,\mathrm{V}$
 - (ii) Ramp generator with asynchronous reset
 - Constant current source driving capacitor load
 - Current and capacitance chosen to fix slope
 - Slope between $(2 \text{ V})/(6 \mu \text{s})$ and $(8 \text{ V})/(T 6 \mu \text{s})$, where T is period of $\sim 30 \text{ kHz}$ clock
 - Instantly resets to 0 V when reset signal asserted
 - (iii) Comparator (i.e., an "ideal" PWM does the sampling)
 - (iv) $\sim 30 \text{ kHz}$ clocked flip–flop with asynchronous reset
 - **Output**: Pulse train with widths modulated by discrete-time samples of input

- 6. Our PWM operation:
 - At every *rising edge* of the clock:
 - (i) Modulator output (i.e., flip-flop's Q) transitions from low to high
 - Flip-flop clocks in a "1" from synchronous input(ii) Ramp resets to 0 V and *starts rising*
 - Its own (asynchronous) reset is tied to \overline{Q} , which goes low
 - Whenever comparator detects that ramp rises *above* input, asynchronously resets flip-flop
 - High output Q goes low
 - Ramp resets because \overline{Q} goes high
 - $\ast\,$ Ramp doesn't rise until next clock
 - * So only one sample per clock cycle
 - $\bullet\,$ Shift and amplify input so that it stays within $2\,\mathrm{V}$ and $8\,\mathrm{V}\,$
 - Set ramp slope to meet $6 \,\mu s$ hysteresis constraints
 - (i) Ramp takes at least 6 μ s to hit 2 V (slope $\leq (2/6) V/\mu s \approx 0.333 V/\mu s$)
 - (ii) Ramp hits 8 V with 6 μ s or more before next clock edge (slope $\geq (8 \text{ V})/(T 6 \mu \text{s}))$ - T is your clock's period
 - Note that comparator and flip-flop could be implemented with a single 555 timer IC
 - Note that intervals between samples are **not** constant (distortion? Nyquist consequences?)
- 7. Parts in the lab
 - Use CD4027 JK flip-flop with asynchronous set-reset (SR)
 - Clock transitions bring output high, so
 - * Connect J high
 - * Connect K low
 - Comparator brings output low, so
 - * Connect S low
 - * Connect comparator to R
 - Use LM311 voltage comparator with **open-collector** output
 - Output is the **floating collector** of a *npn* common-emitter amplifier acting as "BJT switch"
 - Output requires *pull-up resistor* (e.g., $1 \text{ k}\Omega$) for operation (otherwise, output cannot go high)
 - Comparator pin-out very different from op. amp.: be sure to use the right pin-out
 - * Uses all three $V_{CC},\,V_{EE},\,\text{and }GND$ (tie both V_{EE} and GND to 0 V)
 - $\ast\,$ Inputs are still on pins 2 and 3, but they are swapped
 - * Other similar inputs/outputs on completely different pins

- 8. Laboratory experience
 - Many design alternatives given
 - Remember your ramp slope
 - You will need to build a second ramp generator for the demodulator
 - The two ramp slopes must match
 - Make use of **bypass capacitors** at *supply pins* to reduce output noise
 - When taking plots, save as CSV or BMP
 - Saving as BMP prevents extra work, but make sure scope plots show all required information
 - $\ast\,$ Intervals between horizontal and vertical divisions should be clear
 - $\ast\,$ In most cases, channel grounds should be shown
 - * Channels should be labeled in report (e.g., "top waveform is input")
 - If saving as CSV, be sure to...
 - * Label axes and show units
 - * Identify waveforms (e.g., "input" and "output")
 - See pin-out handout
 - Important difference between OA and comparator pin-outs
 - Follow lab *book* procedures
 - Handout gives detailed instructions
 - In part 2, give slopes in V/μ s units
 - Keep resulting **pulse-width modulator** for future labs
- 9. Laboratory reports
 - Answer all questions and provide all plots from lab procedures in lab text
 - Include ALL PLOTS from procedure (even if they aren't mentioned in book)
 - USE the plots in your discussion
 - Consider answering some of the questions from the procedure