ECE 327: Electronic Devices and Circuits Laboratory I

Procedure for Lab 4 (Oscillators Lab)

SEE LAB *BOOK* procedure for information on what you need for your **lab report**.

- 1. In your book, see Figure 4.3: Op-Amp Relaxation Oscillator
 - Build 1 kHz oscillator with LM741 (use ± 5 V supply rails)
 - Set **period** $T = 2RC \ln(3)$ for 1 kHz frequency (note: nano = 10^{-9} , pico = 10^{-12})
 - * Keep $C \ge 100\,\mathrm{pF}$ to dominate parasitic capacitances and $R \ge 1\,\mathrm{k}\Omega$ to reduce power draw
 - View **output** and **capacitor** waveforms on same screen
 - * ALIGN grounds and use 2 V/div on both channels
 - Use Quick Meas to determine Period, Frequency, and Peak-to-Peak of output
 - * Does the LM741 look like a "rail-to-rail" operational amplifier?
 - SAVE A PLOT showing OUTPUT and CAPACITOR waveforms and measurements
 - Adjust time scale (i.e., time per division) to "zoom in" to see the slope of an an output "edge"
 - Use Cursors to find slope of LINEAR PORTION of the "edge"
 - Give slope in $V/\mu s$ units and compare to expected (what is expected for an LM741?)
 - | SAVE A PLOT | showing sloped edge and ΔX and ΔY from cursors (no capacitor)
 - **HOW** does the finite slope limit the fastest realizable frequency? Can RC be too small?
 - * $\underline{\text{Decrease }RC\ substantially}$ to show how the $apparent\ shape$ of the "square" wave changes
 - * **SAVE A PLOT** of "trapezoidal" waveform. Show cursors' ΔX and ΔY of edge slope
 - * Note that the edge slope is **NOT** changing. What is happening? What if $RC \approx 0$?
 - Replace LM741 with LF351 (does the LF351 look like a "rail-to-rail" operational amplifier?)
 - "Trapezoid" sides should have steeper slope ("zoom-in" more if necessary)
 - Use Cursors to find slope of LINEAR PORTION one "side" of "trapezoid"
 - Give slope in $V/\mu s$ units and compare to expected (what is expected for an LF351?)
 - SAVE A PLOT showing sloped edge and ΔX and ΔY from cursors (no capacitor)
- 2. In your book, see Figure 4.9: Monostable 555 Circuit
 - Set output pulse width $T = RC \ln(3)$ to $100 \,\mu s$
 - Keep $C \ge 100 \,\mathrm{pF}$ to dominate parasitic capacitances and $R \ge 1 \,\mathrm{k}\Omega$ to reduce power draw
 - Use 0 V and 10 V supply rails; use 2.2 nF (code: 2n2 or 222) control capacitor on pin 5 of 555
 - Trigger with 0-10 V square wave with **LOW** pulse width between $50-100 \,\mu s$
 - Frequency: 5–10 kHz (**NO** higher or lower!)
 - 5 V amplitude with 5 V OFFSET—TRIGGER MUST NOT GO NEGATIVE!
 - * Use oscilloscope to **VERIFY** 0–10 V trigger
 - * ON OLD FUNCTION GENERATORS, you may need to use $\sim 2.5 \,\mathrm{V}$ offset
 - Use scope trigger | Edge | configuration to synchronize with 555 trigger
 - * Select **soft button** to trigger off of **input** (i.e., function generator) channel
 - * Select soft button to trigger on downward-going edges
 - Use Cursors to determine pulse width of 555 output
 - * ALTERNATIVELY, use Quick Meas on your output channel to measure + Width
 - · If measurement is jumpy, enable Averaging under Acquire with 1 # of samples
 - * SAVE A PLOT of the TRIGGER INPUT and 555 OUTPUT on same screen
 - - SAVE A PLOT of misbehaving results—what happens when trigger is low for too long?
 - IN REPORT, use operation of SR latch to explain results (S = R = 1?)

- 3. In your book, see Figure 4.8: Astable 555 Circuit **KEEP OSCILLATOR** for quarter project
 - Assemble in small area near edge of breadboard (e.g., in *corner* near LM317 regulator circuit)
 - Somehow MARK CLOCK OUTPUT so you can find it later
 - Use 0 V and 10 V supply rails
 - Consider using $0.1-2\,\mu\text{F}$ bypass capacitor at V_{CC} pin
 - * What is the impact of periodic capacitor charging current on rails? Inductance?
 - * What is the impact of capacitor discharging on "steadiness" of nearby ground references? What happens to metal when current flows through it?
 - * Why do designers use separate power planes for analog and digital components?
 - * When analog and digital planes must match, why are they often connected with inductors?
 - Use 2.2 nF (code: 2n2 or 222) control capacitor on pin 5 of 555
 - Choose R_A and R_B to set duty cycle Δ (given in %) equal to 60%, where

$$\Delta = 100\% \times \frac{R_A + R_B}{R_A + 2R_B}$$

To find R_A and R_B , it may be easier to use

$$\frac{R_A}{R_B} = \frac{2\Delta - 100\%}{100\% - \Delta}$$
 or $\frac{R_A}{R_A + R_B} = 2 - \frac{100\%}{\Delta}$ or $\frac{R_B}{R_A + R_B} = \frac{100\%}{\Delta} - 1$

where $\Delta \approx 60\%$

- Set **period** $T = (R_A + 2R_B)C \ln(2)$ for 30 kHz frequency
 - Keep $C \ge 100\,\mathrm{pF}$ to dominate parasitic capacitances
 - Keep $R_B \ge 1 \,\mathrm{k}\Omega$ to reduce power draw
- Probe output and capacitor waveforms: set both channels for 2 V/div and ALIGN grounds
 - Use Quick Meas to show Frequency and Duty Cycle of output
 - At this point, **DO NOT TUNE**; explain differences in your report
 - SAVE A PLOT with output waveform, capacitor waveform, and measurements
- BEFORE LEAVING, oscillator must be TUNED for quarter project (i.e., not for report)
 - (i) **First**, make sure 10 V supply rail is coming from regulated source
 - See handout (i.e., existing LM317 regulator)
 - Disconnect unregulated DC supply from breadboard rails and connect to LM317 input
 - Use 15 V_{DC} as unregulated input
 - Connect LM317 output to breadboard rail so that LM317 powers entire breadboard
 - Regulated bypass capacitors (optional; see supplementary handout for details):
 - * LARGE bypass capacitor (e.g., electrolytic) near LM317 output (and at Adjust)
 - * small bypass capacitor (e.g., large ceramic) near 555 supply (i.e., 15 V_{DC} input)
 - (ii) Next, tune duty cycle so that $58.5\% \le \Delta \le 61.5\%$ by adjusting R_A and R_B
 - Increasing R_A increases duty cycle (and vice versa)
 - Increasing R_B decreases duty cycle (and vice versa)
 - Rather than changing resistances, sometimes it's easier to...
 - * Increase resistance slightly by adding small resistors in series
 - * Decrease resistance slightly by adding large resistors in parallel
 - (iii) Last, tune frequency f so that $30.0 \, \text{kHz} \le f \le 32.8 \, \text{kHz}$ by adjusting C (note: $C \propto 1/f$)
 - Make frequency as LOW AS POSSIBLE! (i.e., very close to 30 kHz)
 - To DECREASE f slightly, increase C slightly by adding small capacitors in parallel
 - To INCREASE f slightly, decrease C slightly by adding large capacitors in series
 - REMEMBER your tuned frequency for calculations in next lab