ECE 327: Electronic Devices and Circuits Laboratory I

Notes for Lab 4 (Oscillators Lab)

1. Introduce operational amplifiers

- "Operational" and (historical) analog computers
 - Simulation of dynamical systems think "Simulink"
 - Wider range of applications now
 - Simple integrators are still very influential
 - * Switched-capacitor integrators make IC state variable filters cheap ("SC filters")
 - High-speed current-feedback (CFB) varieties available
- Differential amplifier with very high gain (i.e., gain near ∞ or ∞/s)
- Despite having same symbol, operational amplifiers are **NOT comparators!**
 - Comparators are faster (more like a switch) and can have special switching features
- Example: non-inverting unity gain buffer (i.e., negative feedback and A/(1+A))
 - Extension: "Superdiode" (i.e., "ideal" diode)
 - Op. amp. as integrator (i.e., from A to A/s) input stage current driven into output capacitor
- Real operational amplifiers (OAs)
 - PSRR (ripple rejection)
 - * As in FET lab, power supply noise artifacts in output
 - Clipping *near* supply rails
 - * Many OAs are not "rail-to-rail" (e.g., LM741) and may not even be symmetric
 - * Oscillators depend on hard clipping
 - * PSRR issues (solution discussed below)
 - Input leakage/bias current
 - * Varies with input implementation
 - · Tens of nanoamps bias with BJT-based (e.g., LM741)
 - · Tens of picoamps leakage with BiJFET (e.g., LF351) can ignore
 - · Picoamps leakage with BiMOS (e.g., CA3130 and CA3160) can ignore
 - * Limits size of resistors (i.e., generate voltage drops)
 - * Trim op. amp. to make input currents equal (e.g., Offset null pins, balance pins, etc.)
 - * Assuming trimmed inputs, try to keep resistance to ground equal at both inputs
 - Input impedance (i.e., $Z_{\rm in}$ between two inputs)
 - * Varies with input implementation similar to leakage
 - * Is made nearly $\infty \Omega$ with *negative* feedback (i.e., op. amp. inputs are bootstrapped by output, so input-to-input current is forced to 0)
 - Slew rate determined by maximum input stage current and output capacitance (I/C)
 - Temperature dependence
 - Parasitic capacitances charging decreases bandwidth and stability margins
 - * Cause: A few pF between every adjacent two pins (metal-air-metal capacitor)
 - * Effect: Reduce bandwidth (phase effects can lead to instability in feedback loop)
 - * Solution: Use small resistors and "larger" capacitors (to dominate parasitics) or frequency compensation (for feedback stability)

- 2. Oscillator building block: the *multivibrator* (multiple discrete states leading to multiple harmonics)
 - Two-state dynamic system characterized by long-term behavior (i.e., stability of equilibria)
 - monostable: returns to single equilibrium after moving into excited state for small time (e.g., camera button-iris action, oscilloscope "single shot")
 - bistable: returns to either of two stable equilibria depending on perturbation (e.g., latches, flip flops, comparators, hysteresis); usually has unstable Sisyphean equilibrium in between
 - **astable**: **no** stable equilibrium (e.g., clocks); bistable that is self-triggered
 - Oscillator implementation
 - operational amplifiers:
 - * positive feedback Schmitt trigger (Otto H. Schmitt, biomedical engineering, squid nerves)
 - * positive feedback makes V += V- an unstable node
 - · bistable: Two supply rails become stable equilibria
 - · Switching occurs at V += V threshold crossing (hysteresis)
 - · Fight poor PSRR with resistor-Zener-reneZ regulator (clipper) at output matched double-anode-Zener-diode (DAZD) parts exist (i.e., two matched Zeners in one package)
 - 555 timer (e.g., LM555 or NE555): generates pulses with clever SR latch circuit
 - * Output sets when Trigger falls below $(1/3) \times V_{CC}$
 - * Output unsets (i.e., resets) when Threshold rises above $(2/3) \times V_{CC}$
 - · DISCHARGE is shorted to ground when output is unset
 - \cdot (2/3) \times V_{CC} is tied to Control (e.g., capacitively grounded for power-up unset)
- 3. Laboratory experience
 - When taking plots, save as CSV or BMP
 - Saving as BMP prevents extra work, but make sure scope plots show all required information
 - * Intervals between horizontal and vertical divisions should be clear
 - * In most cases, channel grounds should be shown
 - * Channels should be labeled in report (e.g., "top waveform is input")
 - If saving CSV, label axes, show units, identify waveforms (e.g., "input", "output")
 - See pin-out handout
 - Operational amplifier **specificaitons** (e.g., expected *slew rates*)
 - Functional schematic of 555 timer circuit (shows RS latch and comparators)
 - Follow lab book procedures
 - See handout for more detailed instructions
 - In part 1, give slopes in $V/\mu s$ units and compare to slew rate specification for each op. amp.
 - In part 2, use understanding of SR latch to explain results
 - In all parts, percent difference is

$$\frac{\text{Measured} - \text{Expected}}{\text{Expected}} \times 100\%$$

- After completing part 3, tune components for 30.0–32.8 kHz and 58.5–61.5% duty cycle
 - * Tune frequency as close to 30 kHz as possible!
 - * Keep tuned oscillator will be used as clock in next lab
 - \cdot REMEMBER your tuned frequency for calculations in **next lab**
- 4. Laboratory reports
 - Answer all questions and provide all plots from lab procedures in lab text
 - For part 1, discuss problems caused by *finite slew rate* (see pin-outs for op. amp. specifications)
 - Slew rate impact on common negative-feedback configurations (e.g., inverting amplifier)?
 - For part 2, discuss problems caused by SR latch within 555 timer (triggering constraints?)