ECE 327: Electronic Devices and Circuits Laboratory I

Notes for Lab 4 (Oscillators Lab)

1. Introduce operational amplifiers
 - “Operational” and (historical) analog computers
 - Simulation of dynamical systems — think “Simulink”
 - Wider range of applications now
 - Simple integrators are still very influential
 * Switched-capacitor integrators make IC state variable filters cheap (“SC filters”)
 - High-speed current-feedback (CFB) varieties available
 - Differential amplifier with very high gain (i.e., gain near ∞ or ∞/s)
 - Despite having same symbol, operational amplifiers are NOT comparators!
 - Comparators are faster (more like a switch) and can have special switching features
 - Example: non-inverting unity gain buffer (i.e., negative feedback and $A/(1 + A)$)
 - Extension: “Superdiode” (i.e., “ideal” diode)
 - Op. amp. as integrator (i.e., from A to A/s) — input stage current driven into output capacitor
 - Real operational amplifiers (OAs)
 - PSRR (ripple rejection)
 * As in FET lab, power supply noise artifacts in output
 - Clipping near supply rails
 * Many OAs are not “rail-to-rail” (e.g., LM741) and may not even be symmetric
 * Oscillators depend on hard clipping
 - PSRR issues (solution discussed below)
 - Input leakage/bias current
 * Varies with input implementation
 * Tens of nanoamps bias with BJT-based (e.g., LM741)
 * Tens of picoamps leakage with BiFET (e.g., LF351) — can ignore
 * Picoamps leakage with BiMOS (e.g., CA3130 and CA3160) — can ignore
 * Limits size of resistors (i.e., generate voltage drops)
 * Trim op. amp. to make input currents equal (e.g., OFFSET NULL pins, BALANCE pins, etc.)
 - Assuming trimmed inputs, try to keep resistance to ground equal at both inputs
 - Input impedance (i.e., Z_{in} between two inputs)
 * Varies with input implementation — similar to leakage
 * Is made nearly ∞Ω with negative feedback (i.e., op. amp. inputs are bootstrapped by output, so input-to-input current is forced to 0)
 - Slew rate — determined by maximum input stage current and output capacitance (I/C)
 - Temperature dependence
 - Parasitic capacitances — charging decreases bandwidth and stability margins
 * Cause: A few pF between every adjacent two pins (metal-air-metal capacitor)
 * Effect: Reduce bandwidth (phase effects can lead to instability in feedback loop)
 * Solution: Use small resistors and “larger” capacitors (to dominate parasitics) or frequency compensation (for feedback stability)
2. Oscillator building block: the **multivibrator** (multiple discrete states leading to multiple harmonics)

- Two-state dynamic system characterized by long-term behavior (i.e., stability of equilibria)
 - **monostable**: returns to single equilibrium after moving into excited state for small time (e.g., camera button-iris action, oscilloscope “single shot”)
 - **bistable**: returns to either of two stable equilibria depending on perturbation (e.g., latches, flip flops, comparators, hysteresis); usually has unstable Sisyphean equilibrium in between
 - **astable**: no stable equilibrium (e.g., clocks); bistable that is self-triggered

Oscillator implementation

- operational amplifiers:
 - positive feedback Schmitt trigger (Otto H. Schmitt, biomedical engineering, squid nerves)
 - positive feedback makes \(V^+ = V^- \) an **unstable node**
 - bistable: Two supply rails become stable equilibria
 - Switching occurs at \(V^+ = V^- \) threshold crossing (hysteresis)
 - Fight poor PSRR with resistor-Zener-regulator (clipper) at output — matched double-anode-Zener-diode (DAZD) parts exist (i.e., two matched Zeners in one package)
 - 555 timer (e.g., LM555 or NE555): generates pulses with clever SR latch circuit
 - Output sets when TRIGGER falls below \((1/3) \times V_{CC}\)
 - Output unsets (i.e., resets) when THRESHOLD rises above \((2/3) \times V_{CC}\)
 - DISCHARGE is shorted to ground when output is unset
 - \((2/3) \times V_{CC}\) is tied to CONTROL (e.g., capacitively grounded for power-up unset)

3. Laboratory experience

- When taking plots, save as CSV or BMP
 - Saving as BMP prevents extra work, but make sure scope plots show all required information
 - Intervals between horizontal and vertical divisions should be clear
 - In most cases, channel grounds should be shown
 - Channels should be labeled in report (e.g., “top waveform is input”)
 - If saving CSV, **label axes, show units, identify waveforms** (e.g., “input”, “output”)

See pin-out handout

- Operational amplifier **specifications** (e.g., expected **slew rates**)
- Functional schematic of 555 timer circuit (shows RS latch and comparators)

Follow lab book procedures

- See handout for more detailed instructions
- In part 1, give slopes in \(V/\mu s \) units and compare to **slew rate** specification for each op. amp.
- In part 2, use understanding of **SR latch** to explain results
- In all parts, percent difference is

\[
\frac{\text{Measured} - \text{Expected}}{\text{Expected}} \times 100\%
\]

- After completing part 3, tune components for 30.0–32.8 kHz and 58.5–61.5% duty cycle
 - Tune frequency as close to 30 kHz as possible!
 - Keep tuned oscillator – will be used as clock in next lab
 - REMEMBER your tuned frequency for calculations in **next lab**

4. Laboratory reports

- Answer all questions and provide all plots from lab procedures in lab text
- For part 1, discuss problems caused by **finite slew rate** (see pin-outs for op. amp. specifications)
 - Slew rate impact on common negative-feedback configurations (e.g., inverting amplifier)?
- For part 2, discuss problems caused by **SR latch** within 555 timer (triggering constraints?)