ECE 327: Electronic Devices and Circuits Laboratory I

Notes for Lab 3 (Voltage Regulators Lab)

- 1. Introduce voltage regulators (very basic, lots more available)
 - Steady, accurate, and temperature-independent voltage references are critical to electronics.
 - Uses:
 - $\ast~{\rm Constant}~{\rm current}~{\rm sources}$
 - * Voltmeters, Ohmmeters, Ammeters
 - * Precision ADCs
 - * Temperature sensors (i.e., make use of strong temperature dependence)
 - Drift over time proportionally bounded by \sqrt{t} (random "drunken" walk)
 - $\ast\,$ Initial drift is greatest, then slow
 - $\ast\,$ Rate is sped up with heat
 - * Manufacturer uses "burn-in" to stabilize reference before shipping
 - Types: Shunt (parallel with load, shunt current away) and series (series with load, voltage drop)
 - Regulator specifications (different **units** specify different formulas used; **lower** is always better)
 - Dropout (DO) voltage and Low-drop-out (LDO) regulators
 - Line regulation (for lab, use V/V and %/V units)
 - PSRR ratio (for lab, approximate AC spec using DC values)
 - Load regulation (for lab, use % units)
 - Bypass capacitors (jargon: "caps" and "puff")
 - Stray inductance (e.g., long wires) is low-pass filter to current spikes
 - * Prevents components from getting sharp steps of current (i.e., reduces bandwidth/speed)
 - * Causes voltage ripples at other components (voltage dips from induced $v_L = L \frac{di_L}{dt}$ emf)
 - Capacitors provide low impedance for high frequencies $(sL \to \infty, sL \| 1/(sC) \to 0 \text{ as } s \to \infty)$
 - * $i_C = C \frac{\mathrm{d} v_C}{\mathrm{d} t}$, so large C can provide large i with little voltage change
 - * Capacitor "props up" steady DC reference
 - * Store energy at slow times to provide current at fast times
 - * Use short capacitor legs and place capacitors close to components
 - * Typically place capacitors at supply and at individual components
 - * Design: large capacitor banks (low \parallel resistance, high \parallel capacitance); populate as needed
 - * Big caps: See inside power supply for example; other examples everywhere
- 2. Switching regulators/DC-to-DC converters/"switchers" (ECE 628) very efficient (95%!) but noisy
 - Use storage elements (e.g., inductors) and switches like gear trains
 - Work like gear trains for speed (voltage) and torque (current) where $P = iv = \tau \omega$
 - Power conserved: change voltage and current *relationship* (impedance transformation)
 - AC transformers do the same thing, but don't need switches (power lines and gear trains)
 - All varieties
 - "Buck" (step voltage **down** to drive high current load)
 - "Boost" (step voltage **up** with less current available)
 - Inverting (change voltage and current "direction", like an idler gear)

- 3. Linear regulators (Dissipative! Inefficient! Power-distortion tradeoff?)
 - Diodes: Backward and forward
 - Forward-biased junction's "built in" barrier potential acts as reference
 - * "Rubber diode" wraps feedback around diode for gain and regulation
 - Breakdown at sufficiently large reverse-bias voltages (nondestructive in theory)
 - * Zener breakdown: Quantum tunneling of electrons (positive probability of leakage)
 - * Avalanche breakdown: Electron hits atom hard enough to release electron which...
 - * Unsafe (too high to be practical current will melt/fry device)
 - Zener diodes (symbol's "hat" is a "Z" that stands for "Zener" and looks like *i*-*v* curve)
 - Designed for safe reverse breakdown then small incremental resistance $R_{\rm on}$
 - * Zener breakdown dominates for low voltages (< 5 V)
 - * Avalanche breakdown dominates for high voltages $(>6\,\mathrm{V})$
 - * In between, electrons leak easily; *very* low $R_{\rm on}$ and great performance
 - Constructive circuit example (i.e., the laboratory experience):
 - (i) Start with Zener shunt (part 1 of lab) with good line regulation but bad load regulation
 - (ii) Add emitter follower "pass transistor" for better load regulation
 - (iii) Add "rubber diode" transistor feedback for tunable output (line regulation? fix?)
 - (iv) Add current limiter (part 2) to prevent destroying load (regulator $I_{\rm sc} \times V_{\rm in}$ on short!)
 - (v) Add current foldback (part 3) to save regulator (and provide for higher current)
 - Double-Anode Zener Diode (DAZD): Two opposite-biased Zeners for clipping/protection
 - Bandgap references (e.g., LM317) for precision electronics
 - Zener negatives:
 - * Inconvenient voltages, especially for low power
 - * Require high current
 - * Depend on temperature (note: pos. Zener tempco can balance neg. diode tempco)
 - * Poor regulation (line and load)
 - $\ast\,$ Most are very noisy
 - Instead, use *bandgap reference*: temperature-compensated *forward-biased* diode (1.25 V drop)
 - The concept:
 - * Diodes have negative tempco (i.e., diode drop falls with rising temperature)
 - $\ast\,$ BJT current sources have positive tempco (think about it)
 - * Run BJT current through a resistor to get voltage with positive tempco
 - * Combine positive and negative tempco voltages to get zero tempco voltage (silicon bandgap!)
- 4. Laboratory experience
 - When taking plots save as CSV or BMP (or snap a CLEAR picture)
 - Show units, label axes, identify waveforms (e.g., "input")
 - Horizontal and vertical divisions should be clear
 - In most cases, channel grounds should be shown
 - Use handouts for guidance on particular circuits
 - Detailed laboratory procedures (look for * in contents), explanations, pin-outs
 - Follow lab *book* (detailed instructions in supplementary text)
 - Keep two off-the-shelf (OTS) 10 V regulators with bypass caps (may delay until later labs)
- 5. Laboratory reports SEE HANDOUT FOR STRATEGIES
 - As always, show data *points* in plots (i.e., not just interpolation).
 - When comparing regulators, consider combining data across all regulators on a single plot.
 - Give units for dropout voltage, line regulation (2), PSRR, load regulation, voltages, and currents.

 $\sim 1.22 \,\mathrm{eV}$