ECE 327: Electronic Devices and Circuits Laboratory I

Notes for Lab 2 (Field Effect Transistor Lab)

- 1. Trans-istor: transconductance (variable) resistor
 - Bipolar ("accident") and unipolar (FET, "valve", like "tube") varieties
 - New technologies share features of both (e.g., insulated gate bipolar transistors (IGBTs))
 - Voltage-controlled current sources (VCCS)
 - Vary channel resistance in order to make current constant
 - Think of "transistor man" from Horowitz and Hill (1989)
 - For a bipolar transistor, base-emitter diode is forward biased, so it carries current too. So

$$i_B = I_S \left(\exp \left(\frac{v_{BE}}{kT/q} \right) - 1 \right)$$
 where $\frac{kT}{q} \approx 25.3 \,\text{mV}$ @ room temperature

and

$$i_C = \beta I_S \left(\exp\left(\frac{v_{BE}}{kT/q}\right) - 1 \right) = \beta i_B$$

where $I_S \approx 0$ and $\beta \gg 1$ are determined by material properties. Fortunately, $i_C = \beta i_B$. This relationship and the (steep) exponential i-v curves help make the bipolar transistor so handy.

• For a unipolar transistor (FET), no current enters the gate. So $i_G = 0$ and

$$i_D = K \left(v_{GS} - V_T \right)^2$$

where $0.5 \,\mathrm{V} < V_T < 10 \,\mathrm{V}$ and (small) K are determined by material properties and temperature.

• Graphically:

- Notice vertical scale. Consider v_{GS} required for a significant drain current
- Additionally, threshold V_T can have a 5 V manufacturing spread (!!)
- NOTE: In tiny region below V_T , unipolar has steep exponential curve similar to bipolar
- BJTs: high transconductance (+), very non-linear curve (-), predictable base-emitter drop (+?)

2. Analogous operation modes (gate \sim base, source \sim emitter, drain \sim collector):

Condition	\Longrightarrow	Unipolar (FET)	~	Bipolar (BJT)
Low gate—source voltage	\Rightarrow	"Subthreshold"	~	"Cutoff"
High gate—source voltage Low source—drain voltage	\Rightarrow \Rightarrow	"Pinch-off" (or "Saturation") "Linear" (or "Triode" or "Ohmic")	~ ~	"Active" "Saturation"

- Bipolar and unipolar "saturation" are different (BJT: out of active mode, FET: into active mode)
- BJT "Saturation" versus FET "Ohmic" only FETs can really be switches
 - Bipolar saturation is not practically usable (slow to exit, and can be impossible to use on IC)
 - In "Ohmic" mode, FET is like programmable resistor (e.g., electronic volume control, switches)
- 3. Diffusion reminder (demonstration: cold H₂O, hot H₂O, shaken H₂O, tilted H₂O (like diode))
 - Diffusion is a statistical certainty (entropy increases)
 - Thermal agitation causes movement, but eventually "now" and "later" look identical
 - Movement is random, so clusters tend to spread out (i.e., "down" "diffusion gradient")

•	•	•				
•	•		0			
•	•	•				

If the \circ is about to move or swap with a \bullet , there is only a 1/8 chance that the result will be *more* concentrated. *Statistically* speaking, "order" tends to decrease (2nd law of thermodynamics).

- 4. Doping and the pn-junction
 - Semiconductors are defined by their electron energies (not the same as "quasi-conductors")
 - Empty conduction band (no "free" carriers in structure)
 - Small "band gap" between valence and conduction bands
 - Small excitation energy (e.g., heat) lets electrons move to conduction band (become mobile)
 - Semiconductor lattices and doping
 - Covalent bonds (silicon has four)
 - Can insert impurities by "doping"
 - * Neutral atom with one less bonding electron inserts a "hole" in lattice
 - * Neutral atom with one more bonding electron
 - Extra electrons and holes can move through lattice (like positive and negative carriers)
 - * A semiconductor with lots of extra holes is "p"-type because holes repel from "positive"
 - * A semiconductor with lots of extra electrons is "n"-type because electrons are "negative"
 - Because there are always the same number of *protons* and *electrons*, the material is always *NEUTRAL*; however, *SPACE CHARGE* can develop as impurities move
 - The pn-junction and the diode "rectifier" (like ball check valve)
 - Join a p-type material and an n-type material to setup diffusion gradient
 - * Holes from p-type will diffuse into n-type
 - * Electrons from n-type will diffuse into p-type
 - Electric field builds up that stops diffusion (like weighted marbles tilting a balanced see-saw)
 - * Extra holes in n-type setup a positive charge, which repels additional holes
 - * Extra electrons in p-type setup a negative charge, which repels additional electrons
 - By applying enough opposing field (i.e., apply positive to p side), bipolar diffusion will continue (like rebalancing the see-saw) bipolar current from holes AND electrons!
 - * Temperature-dependent "diode drop" (0.6–0.7 V at 300 K) is diffusion barrier energy

- 5. Bipolar (junction) transistor (BJT) device operation: **DIFFUSION** and not drift!
 - Opposing pn junctions (diodes) in series $(npn \approx np-pn \text{ and } pnp \approx pn-np)$
 - Forward bias base-emitter diode by $\sim 0.7 \,\mathrm{V}$ causes **bipolar** diffusion of electrons **AND** holes
 - Reverse bias base-collector diode
 - Diffusion is a current source New carriers in base from emitter must go somewhere
 - * Active mode: When base-collector diode reverse biased, carriers are collected and exit
 - * Saturation mode: Otherwise, exit from base; extra current causes 0.8 V base-emitter drop
 - Asymmetric: Emitter and collector have same type of doping, but different amount/size/shape
 - Diffusion current proportional to emitter-base junction area
 - Very fast
 - New special versions (HBTs) operate at terahertz (THz) frequencies
 - For comparison, visible light starts around 750 THz
 - Price of bipolar:
 - Relatively high base current ("leakage")
 - * High input (base) current drive makes simple BJTs impractical for power applications
 - BJT size is practically limited (i.e., BJTs are "large" on a piece of silicon costly)
- 6. Unipolar or field effect transistor (FET): **DRIFT** and not diffusion!
 - In these devices, current flows through a conductive channel
 - Device is (principally) symmetric
 - Source and drain are ends of the channel
 - Source \approx emitter and drain \approx collector
 - * For n-channel devices, "source" means more-Negative end (it sources electrons)
 - * For p-channel devices, "source" means more-Positive end (it sources holes/sinks electrons)
 - Shape of this channel can be changed by using a field to re-orient the charge carriers
 - Control voltage applied to a central gate (similar to "base")
 - Device acts like a valve
 - Similar to vacuum tube (grid \sim gate, drain \sim plate, source \sim cathode/filament)
 - Voltage increases cross-sectional area of channel, so we expect squared v-i relationship (quadratic)
 - FET vs BJT:
 - very high input impedance (low leakage) (+), much smaller footprint/scalable/cheaper (+)
 - high input capacitance (-), slow (-)
 - The Junction FET (JFET): A depletion-mode device
 - A diode (pn-junction) "on its side" (symbol, often symmetric, looks like sideways diode)
 - * Symbol depicts channel type (p/n); arrow is a "diode" that points toward n of pn-junction
 - * "Diode" should always be reverse biased; amount of bias determines channel shape
 - Channel is shaped by reverse bias
 - * If drop across channel is low, channel acts as resistance controlled by reverse bias
 - * If drop across channel is high, channel gets triangular, and current "pinches off"
 - "Pinch off" mode acts as current source by preventing additional current
 - * By Ohm's law, any more current would create a greater drop across channel
 - * The additional reverse bias at drain side of channel would cut-off current completely
 - * So expect an equilibrium current
 - * Changing channel cross-section with gate voltage changes equilibrium current
 - A JFET channel exists until reverse bias takes it away; they're "depletion-mode" devices
 - * Current flows "normally" (with gate-source shorted)
 - * By applying field, we "deplete" the channel to turn current off
 - Relative to MOSFETs, JFETs are fast but have high leakage (< 100 pA)

Figure L2-1: JFET source follower using matched JFETs.

- Clever example: JFET source follower in Figure L2-1
 - * JFETs must be matched on the same piece of silicon
 - \ast Both JFETs are depletion-mode devices
 - * Bottom JFET is a current source (pinched-off channel at maximum size)
 - * Same current flows through top JFET, so its gate and source differ by the same as the bottom gate and source
 - * Hence, the output follows the input exactly (no diode drops!)
 - * Reminder: Followers are used as voltage buffers
 - * For a wide range of output currents, the output voltage stays the same
 - * In other words, the output has very low impedance $(\Delta V/\Delta I \approx 0$; think Thévinin)

- 7. Metal-Oxide-Semiconductor FET (MOSFET) or Insulated-Gate FET (IGFET)
 - Look like symmetric BJT
 - n-channel: two n+ regions separated by a p region
 - p-channel: two p+ regions separated by an n region
 - Middle region is "bulk" or "body"
 - Bulk-source junction must be reverse biased
 - Common (e.g., in power applications) to short bulk to one end of channel
 - * Forces that end of channel to be source
 - * Introduces a diode between drain and source
 - * MUST be sure to keep drain–source reverse biased
 - Otherwise, short bulk to appropriate DC rail (e.g., high for p-channel and low for n-channel)
 - * No difference between source and drain
 - * Bidirectional current: great for switching applications
 - "Gate" separated from bulk by oxide (rust, SiO₂) insulator
 - Gate-oxide-bulk form MOS capacitor (gate: Metal, insulator: Oxide, bulk: Semiconductor)
 - DIELECTRIC BREAKDOWN of oxide is both fatal and easy to induce
 - Gate-bulk field controls channel
 - * Pulls/pushes excess carriers from/to both drain and source
 - * Eventually, bulk region near gate gets inverted to other type
 - * For low drain-source drop, uniform channel acts as gate-controlled resistor
 - * For high drain-source drop, triangular channel "pinches off" current at constant value
 - Enhancement and depletion varieties exist
 - Enhancement: add a field to turn on current
 - Depletion: add a field to turn off current
 - In ohmic mode, low channel resistance and bidirectionality makes them great switches!
 - In a small space (cheap!!), can mimic (e.g., switching, ohmic, etc.) all larger passive components
 - Standard symbol: Shows insulated gate (MOS capacitor)
 - Channel: dashed or solid
 - * dashed: enhancement ("normally off")
 - * solid: depletion ("normally on")
 - Arrow: Diode formed by channel
 - * Points toward n region (channel or bulk)
 - Alternative symbol: BJT-like (n-channel is **n**ot pointing in; etc.)
 - Thick depletion channel; Thin enhancement channel
 - Alternative symbol: Digital "switch"
 - Logic high turns n-channel on
 - Logic low turns *p*-channel on (bubbled symbol)
 - All enhancement mode
 - Using MOSFETs and BJTs
 - Common-gate, common-drain, and common-source work like analogous BJT configurations
 - MOSFETs have high gate capacitance and are slow, but have negligible gate leakage ($< 10 \,\mathrm{pA}$)
 - Unlike BJT, can swing from rail to rail (no diode drops to worry about)
 - IC designers can control MOSFET properties by adjusting geometry and oxide capacitance

- 8. Complementary or Complementary-Symmetry MOS (CMOS)
 - Use n-channel and p-channel MOSFETs together in exactly equal and opposite ways
 - Low-power device high input impedance and no current in digital operation
 - Because of high gate capacitance, power becomes a problem at high frequencies (V^2Cf)
 - Modern microprocessors have high FET count, so have high capacitance
 - Modern microprocessors are very fast (for absolutely no good technical reason)
 - Easily hit 2 kW with 30 M transistors at 4 GHz (!!!!)
 - Trick: Lower V
- 9. Example: CA3130 (uncompensated) BiMOS operational amplifier schematic from datasheet
 - Recall: Operational amplifier is differential amplifier with (nearly) infinite qain
 - CA3160 is identical, but has internal compensation capacitor for unity-gain stability
 - Combines BJTs and MOSFETs
 - FETs: Minimal input leakage; maximal "rail-to-rail" output swing
 - BJTs: Give very high gain and high speed
 - * Notice common-emitter amplifier with current source at collector ("dynamic load")
 - * Current source has high impedance ($\Delta I/\Delta V \approx 0$; think Thévenin)
 - * Common-emitter gain is collector impedance divided by emitter impedance (∞ /tiny $\approx \infty$)
 - Current source implemented with (Cascode configuration) MOSFET current mirror
 - * Cascode: Common-source followed by common-gate (yes, cascOde, with an "o")
 - * "Cascode" historically describes an "cascaded triode", an alternative to a "pentode"
 - · Traditional "cascades" connect plate anode ("drain") to grid ("gate") to magnify gain.
 - · A "cascode" "cascades" a plate anode ("drain") with a filament cathode ("source").
 - * Here, common-source sets current (by mirror) and common-gate buffers current
 - * Prevents channel-length modulation (like BJT Early effect) and Miller effect
 - Output stage is **CMOS** inverter operated in linear range (i.e., as class-A amplifier)
 - **NOTE:** Gate-oxide protection diodes (breakdown harmlessly and short out static discharge)
- 10. Laboratory experience (CMOS inverter, integrator review, switched-capacitor integrator)
 - Be very careful with MOS parts!
 - MOS parts:
 - * CD4007 (3 CMOS pairs), CD4066 (4 CMOS analog switches), CD4049 (6 CMOS inverters), CA3160 (compensated BiMOS operational amplifier)
 - Static discharge can fry gate oxide (i.e., dielectric breakdown)
 - Keep one hand on breadboard metal when other hand is installing MOS chip
 - DO NOT install chip when power is on!
 - DO NOT forget to wire-up power rails. In fact, DO IT FIRST!!!
 - * Power on circuit before signal source; turn off signal source before powering off circuit.
 - When debugging problems, test parts in isolation
 - If one component on a part is not working, try a different component on the same part
 - Use handouts for guidance on particular circuits
 - Detailed laboratory procedures (and pin-outs)
 - Continuous-time integrator schematics and explanations
 - Follow lab book (detailed instructions in supplementary text)
 - DO NOT disassemble continuous-time integrator! It is used in the switched-capacitor circuit!
 - When taking plots, save as CSV or BMP (or snap a CLEAR picture)
 - Show units; label axes; identify waveforms (e.g., "input"); show horizontal/vertical divisions
 - In most cases, channel grounds should be shown

