ECE 327: Electronic Devices and Circuits Laboratory I

Notes for Lab 1 (Bipolar (Junction) Transistor Lab)

- 1. Introduce bipolar junction transistors
 - "Transistor man" (from *The Art of Electronics* (2nd edition) by Horowitz and Hill)
 - Transistors are not "switches"
 - Base-emitter diode current sets collector-emitter resistance
 - Transistors are "dynamic resistors" (i.e., "transfer resistor")
 - Act like closed switch in "saturation" mode
 - Act like open switch in "cutoff" mode
 - Act like current amplifier in "active" mode
 - Active-mode BJT model
 - Collector resistance is dynamically set so that collector current is β times base current
 - $-\beta$ is assumed to be very high ($\beta \approx 100-200$ in this laboratory)
 - Under most conditions, base current is negligible, so collector and emitter current are equal
 - $-\beta \approx h_{fe} \approx h_{FE}$
 - Good designs only depend on β being large
 - The active-mode model:
 - * Assumptions:
 - · Must have $v_{EC} > 0.2 \,\mathrm{V}$ (otherwise, in saturation)
 - · Must have very low input impedance compared to βR_E
 - * Consequences:
 - $\cdot i_B \approx 0$
 - $v_E = v_B \pm 0.7 \,\mathrm{V}$
 - $i_C \approx i_E$
 - Typically, use base and emitter voltages to find emitter current. Finish analysis by setting collector current equal to emitter current.
 - Symbols
 - Arrow represents base-emitter diode (i.e., emitter always has arrow)
 - npn transistor: Base-emitter diode is "not pointing in"
 - pnp transistor: Emitter-base diode "points in proudly"
 - See part pin-outs for easy wiring key
 - "Common" configurations: hold one terminal constant, vary a second, and use the third as output
 - common-collector ties collector to DC voltage so that variations in base cause variations in emitter ("emitter follower" or "voltage buffer")
 - common-base ties base to DC so that variations in emitter cause variations in collector ("current buffer" or "current source")
 - common-emitter ties emitter to DC so that variations in base cause variations in collector ("voltage amplifier")
 - * emitter can be degenerated by a resistor between emitter and DC
 - * emitter degeneration adds feedback and increases linearity
 - · Increased base–emitter voltage \implies increased collector current \implies increased R_E voltage \implies decreased base–emitter voltage (i.e., negative feedback ensures base–emitter voltage of $\sim 0.7\,\mathrm{V}$)
 - · With high β or high R_E , collector current is independent of transistor nonlinearities (i.e., only depends on v_B and R_E ; linear amplifier of v_B)
 - * emitter degeneration improves thermal stability (i.e., power dissipates across R_E instead of transistor)

2. Laboratory experience

- When taking plots, save as CSV or BMP
 - Saving as BMP prevents extra work, but make sure scope plots show all required information
 - * Intervals between horizontal and vertical divisions should be clear
 - * In most cases, channel grounds should be shown
 - * Channels should be labeled in report (e.g., "top waveform is input")
 - If saving as CSV, be sure to...
 - * Label axes and show units
 - * Identify waveforms (e.g., "input" and "output")
- Variable resistors: Potentiometers or resistance boxes
- Follow lab book
- Use handouts for guidance on particular circuits
 - Procedure (and troubleshooting)
 - Schematics and explanations
 - Pin-outs (avoid use of electrolytic capacitors)