ECE 209: Circuits and Electronics Laboratory

Course Packet Errata

As of the Autumn 2008 edition of the ECE 209 course packet, the following errors should be corrected.

Resistor Color Codes

• In the **Basic circuit elements** section under the image of a resistor, the colors should be ordered by number (i.e., from 0-9). Then it would be clear that 2-7 are the **ROYGBV** colors of a rainbow.

Experiment 1: Introduction to Oscilloscope & Function Generator

- Under 1. Oscilloscope in the introductory material,
 - In 8) Measure the phase difference, the expression for θ uses the principal arcsine, and so it is only valid for quadrant I phase angles between 0° and 90°. Often, θ will need to be manipulated to place the phase in the proper quadrant.

Quadrant	Positive Phase Difference	Negative Phase Difference
I	θ	$-360^{\circ} + \theta$
II	$180^{\circ} - \theta$	$-180^{\circ} - \theta$
III	$180^{\circ} + \theta$	$-180^{\circ} + \theta$
${f IV}$	$360^{\circ} - \theta$	$-\theta$

Because the filters in this class are **causal**, phase differences will usually be *negative* indicating that signals have been "delayed."

- Under part 6 of the exercises,
 - Because these frequencies are all greater than 1.7 kHz, this circuit provides a phase shift from quadrant III, and so the expression for θ should be

$$\theta = \arcsin\left(\frac{\text{distance between two vertical intersections}}{\text{maximum vertical extension of ellipse}}\right) - 180^{\circ}.$$

Experiment 4: Frequency Response of First Order Active Circuits

- In 1. Frequency Response of First Order Active Low Pass Filter in the intro. material,
 - The Phase Response in Figure 2 has a deceiving vertical scale.
 - * The highest value on the scale should be -180° .
 - * The lowest value on the scale should be -270° .

Technically, there is nothing wrong with the present scale. However, it may be confusing to associate *positive* phase shift with a *low-pass filter* that is described as adding *lag*. The source of the confusion is the extra 180° shift that accompanies the inverting configuration.

- In 2. Frequency Response of First Order Active High Pass Filter in the intro. material,
 - Change R to R_1 in ϕ expression so that $\phi(\omega) = -90^{\circ} \arctan(R_1 C \omega)$.
- Under part 2 of the exercises,
 - The Calculated phase shift in the last column of the data table should read

$$-180^{\circ} + \arcsin\left(\frac{\text{intersection}}{V_{\text{opp}}}\right).$$

Otherwise, phase shift will be -180° for low frequencies and -90° for high frequencies, which is incorrect for a high-pass filter. Figure 4 in the introductory material shows the correct curve.

ECE 209 Course Packet Errata

Experiment 5: Step Response of Second Order Circuits

- Under 2. Frequency Response of Second Order Low Pass Filter in the intro. material,
 - The expression for phase should be

$$\phi(\omega) = -\arctan \left(2\xi\omega_0\omega, \,\omega_0^2 - \omega^2\right) \triangleq \begin{cases} -\arctan\left(\frac{2\xi\omega_0\omega}{\omega_0^2 - \omega^2}\right) & \text{if } \omega < \omega_0, \\ -90^\circ & \text{if } \omega = \omega_0, \\ -180^\circ -\arctan\left(\frac{2\xi\omega_0\omega}{\omega_0^2 - \omega^2}\right) & \text{if } \omega > \omega_0. \end{cases}$$

That is, ϕ cannot be calculated without specifying the quadrant of the $H(j\omega)$ phasor. As ω increases, ϕ should swing smoothly from 0° to -180° , as shown in the phase response in Figure 2.

– In the phase response in Figure 2, it should be noted that the steepness of the transition region depends on the damping ratio ξ . That is, as the damping ratio decreases, not only does the magnitude response get a higher peak, but the phase response gets **steeper**. In fact, for $\xi = 0$, the phase response is a negative step that switches from 0° to -180° at $\omega = \omega_0$.

Experiment 6: Non-Linear Circuit — Diode and Transistor Switch

- Under 2. Transistor Switch in the intro. material,
 - The explanation refers to current I_b and nodes c and e, but it does not define these entities.
 - * Current I_b flows through resistor R_1 into the **base** of the transistor.
 - * Node c (i.e., transistor **collector**) is the positive (i.e., "+") side of output $V_{\text{out}}(t)$.
 - * Node e (i.e., transistor **emitter**) is the negative (i.e., "-") side of output $V_{\text{out}}(t)$.
 - In the explanation, "V0" should be named V_{out} to match Figure 3.

Experiment 7: D/A Application

- Under 1. DAC using Summing Amplifier in the intro. material,
 - The expression for output voltage is wrong. The R_0 and R_f variables should be swapped:

$$V_{\text{out}} = -I \cdot R_f = -\frac{R_f}{R_0} V_{\text{ref}} \left(8D_3 + 4D_2 + 2D_1 + D_0 \right)$$

- In both of the exercises,
 - The $V_{\rm ref}$ signal would normally be a constant 5 $V_{\rm DC}$.
 - However, it is not trivial to generate a **third** DC voltage in *this* laboratory.
 - * The DC supply provides the $15\,V_{DC}$ and $-15\,V_{DC}$ supply rails for the operational amplifier, and so the $5\,V_{DC}$ reference would have to be derived from the $15\,V_{DC}$ rail (e.g., using a voltage divider followed by a unity-gain buffer circuit).
 - For simplicity, let V_{ref} be a sine wave with $5 \, V_{\text{RMS}}$ amplitude and 1 kHz frequency.
 - * Set digital voltmeter (DVM) to measure AC RMS voltage INSTEAD of DC voltage.
 - * Note that all measured voltages will be positive even though we expect them to be negative. This effect is an artifact of using RMS rather than DC.
 - * Function generator has $50\,\Omega$ output impedance (i.e., Thévenin equivalent resistance is $50\,\Omega$).
 - · So for the current-summing DAC, you should measure both V_{out} and V_{ref} for each input.
 - · As the current-summing DAC requires more current, V_{ref} will fall because of the voltage dropped across the 50 Ω output impedance.
 - · In the R-2R ladder, the current draw is the same for every input, and so the V_{ref} should also be steady (but not necessarily 5 V_{RMS}) across all inputs.