ECE 209: Circuits and Electronics Laboratory Notes for Lab 7 (Digital-to-Analog (D/A) Application)

- 1. Digital-to-analog converter (DAC) "1 least significant bit (LSB)" \triangleq Smallest output step possible
 - Now, signals are generated by a computer as *codes* separated by intervals of time.
 - To use those signals in the physical world, need to convert those abstract codes to voltages.
 - When codes are in binary, each bit can *electronically* control a switch (e.g., a *transistor*); those switches turn on and off currents into **summing junction** formed by operational amplifier.
 - Amplifier **gain** changes output *scale* "clicking" heard in function generators (50 Ω output?).
 - Modern DAC's use more complicated schemes. "1-bit DAC" technologies *pulse* modulate.
 - * Switches (as opposed to analog amp.) burn negligible power (wall switches vs. dimmers).
 - $\ast\,$ Increase "number of bits" by increasing samples per second (no extra hardware).
 - $\ast\,$ So adjusting intensity in time can be very efficient and very cheap to implement.
 - $\ast\,$ Example: Digital lights only need to quickly turn red/green/blue on/off independently.
 - The standard summing amplifier uses weighted resistances to generate different currents.
 - In the configuration shown in the book, every new code causes current from $V_{\rm ref}$ to change.
 - * Rapidly changing current can cause noise to spread to far regions of a circuit.
 - * To fix, change pre-resistor SPST to post-resistor SPDT between ground & virtual ground.
 - More importantly, *integrated circuit* resistance *matching* is easy, but *ratio matching* is difficult.
 - $\ast\,$ Greatly affects *linearity* of the DAC (see INL/DNL nonlinearity specifications).
 - Clever R-2R ladder solves both problems
 - Equivalent resistance into each ladder "wrung" is R (i.e., (new wrung) $\|$ ladder = $2R\|(R+R)$).
 - Regardless of number of bits and switch state, current into ladder is a fairly steady $V_{\rm ref}/R$.
 - Each new section halves previous current. Last wrung of *n*-bit DAC carries $V_{\text{ref}}/R \times 2^{-n}$.

- 2. Introduce and complete the Digital-to-Analog (D/A) Application lab.
 - Resistor color codes: Black, Brown, ROYGBV, Gray, White correspond to **digits** 0–9
 - Brn-Blk-Red: $1 k\Omega$, Brn-Red-Red: $1.2 k\Omega$, Red-Red-Red: $2.2 k\Omega$, Brn-Blk-Orange: $10 k\Omega$ - Also try parallel or series combinations (note: only R_F/R_0 and R_F/R ratios matter)
 - * A resistance R is equal to 2R in parallel with 2R (e.g., $5 k\Omega = 10 k\Omega || 10 k\Omega$).
 - Mimic switches by **manually** connecting and disconnecting wires (don't open-circuit R-2R!).
 - For V_{ref}, use sine wave @ 5 V_{RMS} & 1 kHz; set DVM for V_{RMS,AC} (expect positive values).