ECE 209: Circuits and Electronics Laboratory

Notes for Lab 7 (Digital-to-Analog (D/A) Application)

1. Digital-to-analog converter (DAC) — "1 least significant bit (LSB)" \triangleq Smallest output step possible

- Now, signals are generated by a computer as codes separated by intervals of time.
- To use those signals in the physical world, need to convert those abstract codes to voltages.
- When codes are in binary, each bit can electronically control a switch (e.g., a transistor); those switches turn on and off currents into summing junction formed by operational amplifier.
- Amplifier gain changes output scale - "clicking" heard in function generators (50Ω output?).
- Modern DAC's use more complicated schemes. "1-bit DAC" technologies pulse modulate.
* Switches (as opposed to analog amp.) burn negligible power (wall switches vs. dimmers).
* Increase "number of bits" by increasing samples per second (no extra hardware).
* So adjusting intensity in time can be very efficient and very cheap to implement.
* Example: Digital lights only need to quickly turn red/green/blue on/off independently.
- The standard summing amplifier uses weighted resistances to generate different currents.
- In the configuration shown in the book, every new code causes current from $V_{\text {ref }}$ to change.
* Rapidly changing current can cause noise to spread to far regions of a circuit.
* To fix, change pre-resistor SPST to post-resistor SPDT between ground \& virtual ground.
- More importantly, integrated circuit resistance matching is easy, but ratio matching is difficult.
* Greatly affects linearity of the DAC (see INL/DNL nonlinearity specifications).
- Clever $R-2 R$ ladder solves both problems
- Equivalent resistance into each ladder "wrung" is R (i.e., (new wrung) \|ladder $=2 R \|(R+R)$).
- Regardless of number of bits and switch state, current into ladder is a fairly steady $V_{\text {ref }} / R$.
- Each new section halves previous current. Last wrung of n-bit DAC carries $V_{\text {ref }} / R \times 2^{-n}$.

2. Introduce and complete the Digital-to-Analog (D / A) Application lab.

- Resistor color codes: Black, Brown, ROYGBV, Gray, White correspond to digits 0-9
- Brn-Blk-Red: $1 \mathrm{k} \Omega$, Brn-Red-Red: $1.2 \mathrm{k} \Omega$, Red-Red-Red: $2.2 \mathrm{k} \Omega$, Brn-Blk-Orange: $10 \mathrm{k} \Omega$
- Also try parallel or series combinations (note: only R_{F} / R_{0} and R_{F} / R ratios matter) * A resistance R is equal to $2 R$ in parallel with $2 R$ (e.g., $5 \mathrm{k} \Omega=10 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega$).
- Mimic switches by manually connecting and disconnecting wires (don't open-circuit $R-2 R$!).
- For $V_{\text {ref }}$, use sine wave @ $5 \mathrm{~V}_{\mathrm{RMS}} \& 1 \mathrm{kHz}$; set DVM for $\mathrm{V}_{\mathrm{RMS}, \mathrm{AC}}$ (expect positive values).

