ECE 209: Circuits and Electronics Laboratory
 Notes for Lab 6 (Nonlinear Circuits: Diode and Transistor Switch)

1. This lab strays a little from signals and systems into circuits.

- Controls, signals, and communications engineers use abstract blocks. Gross oversimplification:
- Signals and systems: analyze mathematical descriptions to determine impact on waveforms (input and output) (ECE 351/352/600).
- Communications: How to change input to communicate over given channel (ECE 501/508).
- Controls: How to adjust system for desired output (ECE 551/557).
- Circuits people implement blocks with physical devices (ECE 323/327/628).
- Materials people use physical properties to make devices (ECE 331/432/637).
- Physicists do experiments (i.e., science) to describe behavior of physical world.

2. Nonlinear circuits (v not linearly related to i, i^{\prime}, or $\int i$)

- A diode is a $p n$-junction; it joins a " p-type material" with an " n-type material."
- The p-type material is neutral, but its covalent lattice is incomplete; it lacks electrons in spots. Those spots where it is lacking are called "holes" and they act like positive charges.
- The n-type material is neutral, but there are more electrons than needed for covalent lattice.
- When the two materials are joined, p-type "holes" diffuse into the n-type material and n-type electrons diffuse into the p-type material (like different colored gasses mixing).
- Diffusion causes the n-type material to become positively charged and the p-type material to become negatively charged. This dipole creates a force that stops further diffusion.
- By applying a voltage to cancel the dipole, diffusion can continue and current will easily flow through the diode like a closed switch.
- For silicon diodes at room temperature, $\sim 0.7 \mathrm{~V}$ of "forward bias" turns off dipole.
* Picture spring-loaded ball check valve - small forward "cracking pressure" opens valve.
* We use $1 \mathrm{~N} 914 / 1 \mathrm{~N} 4148$ diodes $-v_{D} \approx 0.7 \mathrm{~V} @ i_{D} \geq 10 \mathrm{~mA} ; v_{D} \approx 0.6 \mathrm{~V} @ i_{D} \approx 1 \mathrm{~mA}$.
. In today's lab, i_{D} will be slightly less than 1 mA , and so $v_{D}<0.6 \mathrm{~V}$ (e.g., 0.5 V).
- Diode symbol indicates direction of forward bias (arrow pointing in direction of current flow) - current flows from p to n.

- A bipolar transistor is a sandwich of three alternating types of semiconductor ($n p n$ or $p n p$).
- Current through device is amplified version of (forward-biased) pn-diode current.
* Middle region is called base.
* Complementary section of $p n$ diode is called emitter (symbol arrow indicates emitter).
* Other region is called collector.
- For transistors in our lab, base current is amplified by ~ 100 :
* For $n p n$, base current i_{B} flows from p to n; collector current $i_{C} \approx 100 i_{B}$ from n to n.

* For $p n p$, base current i_{B} flows from p to n; collector current $i_{C} \approx 100 i_{B}$ from p to p.

* Collector-to-emitter region acts like resistor that tries to adjust to ensure $i_{C} \approx 100 i_{B}$.
- A transistor is a transfer (variable) reistor.
- Also called a transconductance (variable) resistor, but the justification for that use is outside the scope of this class.
- Transistor can only act like positive resistance. That is, when i_{B} gets too large, transistor acts like a short circuit between collector and emitter.
. When $i_{B} \gg 0$, "saturation mode" puts "closed switch" between collector and emitter.
. When $i_{B}=0$, "cutoff mode" sets $i_{C}=0$ (note that $i_{B} \geq 0$ always).
- When i_{B} is small, "active mode" means $i_{C} \approx 100 i_{B}$ (not used today).
- Just like diode, collector-to-emitter "switch" has a small voltage (~ 0.2) across it.
- Bipolar symbol has arrow showing position of diode.
* $n p n$ symbol is not pointing in; $p n p$ symbol points in proudly.
- In this lab, we make i_{B} zero or so large that transistor is in its "switching" regions.
* Collector-to-emitter is either "open" (cutoff: $i_{B}=0$) or "closed" (saturation: $i_{B} \gg 0$).
* "Active" mode is used in many analog applications (e.g., the 741 op . amp. - see schem.).

3. Introduce and complete the Nonlinear Circuits: Diode and Transistor Switch lab.

- Resistor color codes: Black, Brown, ROYGBV, Gray, White correspond to digits 0-9
- Brown-Black-Red $=1000=1 \mathrm{k} \Omega$; Brown-Black-Orange $=10000=10 \mathrm{k} \Omega$
- Part pinouts handout has top views; book shows bottom views.
- In your report, try to explain different regions of curves in terms of switches turning on/off.
- Remember that conducting diode (i.e., "closed switch") has $0.5 \sim 0.7 \mathrm{~V}$ drop across it.
- Remember that conducting transistor (i.e., "closed switch") has $\sim 0.2 \mathrm{~V}$ drop across it.
- For part 3, give theoretical and actual $V_{s 1, s 2}$ values for both designs (i.e., Figures 4 and 5).

