ECE 209: Circuits and Electronics Laboratory

Notes for Lab 5 (Properties of Second-Order Circuits)

1. Systems review

- $Me^{j\phi}$ can be represented as a radial vector of length M and angle ϕ from the origin.
 - The tip of the vector will be a point (x, y) and $Me^{j\phi} = x + jy$.
 - * So vertical axis is imaginary (j) and horizontal axis is real.
 - * By Pythagorean theorem (or distance formula), $M = \sqrt{x^2 + y^2}$.
 - * By trigonometry, $\phi = \arctan(y, x)$ (i.e., $\phi = \arctan(y/x)$ when (x, y) in quadrant I).
 - Also, $Me^{j\phi} = \cos(\phi) + j\sin(\phi)$.
 - * Visualize a turntable with a single peg sitting at its edge.
 - * As the turntable spins (i.e., as ϕ increases), the peg moves around a circle.
 - * Imagine viewing the turntable from a side (rather than from the top).
 - · From the side, peg position oscillates back and forth with a sinusoidal trajectory.
 - · From two perpendicular sides, the two sinusoids are 90° out of phase sine and cosine.
 - * Alternatively, realize that $\cos(\phi)$ and $\sin(\phi)$ are the length of the adjacent and opposite sides of the triangle formed by $Me^{j\phi}$.
 - * By the identity,

$$\cos(\phi) = \frac{e^{j\phi} + e^{-j\phi}}{2} = \text{Re}\big(e^{j\phi}\big) \qquad \text{and} \qquad \sin(\phi) = \frac{e^{j\phi} - e^{-j\phi}}{2j} = \text{Im}\big(e^{j\phi}\big)$$

- · Add a $\angle \phi$ vector to a $\angle -\phi$ vector imaginary parts cancel and real parts double.
- · When thinking of $\sin(\omega t)$ and $\cos(\omega t)$, look at a **rotating** $e^{j\omega t}$ from the side.
- * Notice that $|e^{j\phi}| = \sqrt{(\text{Re}(e^{j\phi}))^2 + (\text{Im}(e^{j\phi}))^2} = \sqrt{\cos^2(\phi) + \sin^2(\phi)} = 1.$
- This vector is called a **phasor** to differentiate it from vectors with complex elements.
 - * Each element of such vectors can be represented as a phasor.
 - * So we can have vectors of phasors (e.g., $\vec{v} = [a+jb, c+jd, M_1e^{j\phi_1}, M_2e^{j\phi_2}]$).
 - * Phasors represented in polar (radial) form $M \angle \phi \triangleq M e^{j\phi}$ or Cartesian form (Re, Im).
- Find transfer function from differential equation by assuming input $x(t) = Xe^{st}$ and output $y(t) = Ye^{st}$ where $s \triangleq \sigma + j\omega$ (i.e., steady-state solution).
 - Then x' = sx, $x'' = s^2x$, y' = sy, $y'' = s^2y$. For **these** functions, d/dt is multiplication by s.
 - Substitute derivatives and solve for y(t)/x(t). Note that e^{st} cancels and y(t)/x(t) = Y/X, and your solution sets Y/X equal to a ratio of s polynomials.
 - For any s, complex value $H(s) \triangleq Y/X$ scales input to get output (i.e., $y(t) = H(s)Xe^{st}$).
 - -H(s) is the transfer function. Its denominator roots describe the transient response of system.
 - Transients must decay for system to reach steady-state. System is called **stable** in this case.
 - Because $e^{st} = e^{\sigma t}e^{\omega t}$, real part of each **pole** must be negative for stability.
 - * "Poles" shape |H(s)| by pulling it up to ∞ at points like a **tent pole.**
 - * Numerator roots are called **zeros** because they pull tent to the ground.
 - To determine frequency response, put tent **poles** and **zeros** in complex plane and examine tent shape along imaginary axis (where Re = 0).
 - * If poles have $\sigma = 0$, tent is pulled to infinity at that ω frequency (i.e., resonance).
 - * Complex poles/zeros are in pairs. So tent is symmetric about real axis (i.e., Im = 0).
 - * So for 2^{nd} -order filter, **angle** of positive ("upper") pole determines damping ratio (ξ) .
 - · Note: $s^2 + 2\xi\omega_0 s + \omega_0^2$ if $\xi < 1$, imaginary pole located at $\omega_0 \angle (180^\circ \arccos(\xi))$.
 - · RLC characteristic poly.: $s^2 + (R/L)s + 1/(LC) LC$ sets ω_0 ; R sets damping ξ .

2. Filters review

- Corner/cutoff/"knee" frequency is where output power is half of passband power.
 - If power gain is 1/2, then signal gain is $1/\sqrt{2}$. Note that $20 \log_{10} \sqrt{2} = 10 \log_{10} 2 \approx 3 \, \text{dB}$.
- Pass- and stop-bandwidth are separated by "corners" at top of "transition regions."
- For near ideal performance, usually want steep transitions with sharp corners.
- Transition steepness governed by filter order (i.e., number of poles).
- Corner sharpness governed by damping factors.
- 3. Passive second-order filters (voltage divider is electric bell with resistance damping)
 - To produce steep transitions, need high-order filters.
 - Low-order filters cannot be easily cascaded with active buffers.
 - Cascades of RC filters do not produce sharp knees ("many a soft knee do not a hard knee make").
 - Inductors and capacitors together (LC resonance) can greatly improve knee sharpness.
 - Inductors have many undesirable properties in small-signal (i.e., not **power**) circuits.
- 4. Second-order active filters.
 - Active filters allow for gain, simplicity, robustness, and can have hard "knees" without inductors.
 - \bullet Can construct Sallen-Key filter topology from modification of RC cascade.
 - 1. Start with RC section followed by second RC section (with no buffer).
 - To prevent second section from *loading* the first, buffer is usually inserted between them.
 - Buffered combination still has soft knee.
 - 2. Buffer (e.g., use unity-gain op. amp.) the output.
 - 3. Connect ground of first RC section to buffered output.
 - 4. This bootstrapping sharpens knee by applying second capacitor gently rather than all at once.
- 5. Introduce and complete the Properties of Second-Order Circuits lab.
 - Inductors are large tunable boxes in cabinet. Tune for $0.5\,\mathrm{H}$. May measure R_L with DMM.
 - Generate step responses using **SLOW** square wave (e.g., $\sim 50 \, \mathrm{Hz}$).
 - Set scope to trigger on input channel. Adjust horizontal/vertical scales/position to zoom.
 - Capture **time scale** and **amplitude** information from scope.
 - If 741-type operational amplifier is not available, use 747 (two 741-type OAs on one chip).
 - 747 (and 741) part pinout on supplementary document.
 - Note the supply rails! Op. amps need power from both sides to be able to work.
 - Be sure to use dual $\pm 5 \,\mathrm{V}$ supplies with a common ground. Use $\pm 6 \,\mathrm{V}$ if you see clipping.
 - If you see a lot of noise on OA output, then add $1 \mu F$ (code 105) across each supply rail.
 - * Connect one bypass capacitor from positive supply to ground.
 - * Connect one bypass capacitor from **negative supply** to **ground**.
 - * Place capacitors **close** to operational amplifier pins and try to use short capacitor leads.
 - Resistor color codes: Black, Brown, ROYGBV, Gray, White correspond to digits 0-9
 - Capacitor codes are like resistor codes (digit₁/digit₂/number-of-zeros) but typically use unit pF $-0.01 \,\mu\text{F} = 103$; $0.1 \,\mu\text{F} = 104$; $0.068 \,\mu\text{F} = 683$ or 0.068 (decimals usually indicate μF units)
 - In your report, for both filters,
 - (i) Compare measured **step responses** to predicted curves from MATLAB.
 - (ii) Plot the **frequency response** for the three cases in Matlab.
 - Relate the frequency content of each filter to the corresponding step response.
 - For example, consider how steep the filter edge is (bandwidth) and how "ringy" the response is (damping and corner shape).

Sample Code

MATLAB Code for Step and Frequency Response of a Single Transfer Function

```
% Define transfer function parameters
R = 1e3;
              % 1 kiloOhms (resistance)
L = 0.5;
               % 0.5 Henry (inductance)
C = 0.01e-6;
               % 0.1 microFarads (capacitance)
% Define Laplace-domain variable s (as transfer function object)
s = tf('s');
% Define new transfer function object using existing s object
H = (1/(L*C))/(s^2 + (R/L)*s + 1/(L*C));
% % Alternatively, could use vectors of numerator and denominator polynomial
% % coefficients:
% H = tf([1/(L*C)],[1(R/L)1/(L*C)]);
% Generate step response in first figure
figure(1);
step(H);
grid on;
% Generate Bode plot in second figure
figure(2);
bode(H);
grid on;
```

Matlab Code to Overlay Several Step and Frequency Responses

```
% Define three cases
R1 = 1e3; L1 = 0.5; C1 = 0.01e-6;
R2 = 10e3; L2 = 0.5; C2 = 0.02e-6;
R3 = 20e3; L3 = 0.5; C3 = 0.03e-6;
% Define Laplace-domain variable s (as transfer function object)
s = tf('s');
% Define three transfer functions
H1 = (1/(L1*C1))/(s^2 + (R1/L1)*s + 1/(L1*C1));
H2 = (1/(L2*C2))/(s^2 + (R2/L2)*s + 1/(L2*C2));
H3 = (1/(L3*C3))/(s^2 + (R3/L3)*s + 1/(L3*C3));
% Overlay three step responses in first figure
figure(1);
step( H1, 'b-', H2, 'g--', H3, 'm-.' );
grid on;
legend( 'H_1', 'H_2', 'H_3' );
% Overlay three Bode plots in second figure
figure(2);
bode( H1, 'b-', H2, 'g--', H3, 'm-.');
grid on;
legend( 'H_1', 'H_2', 'H_3' );
```