
ECE 209: Circuits and Electronics Laboratory

Notes for Lab 5 (Properties of Second-Order Circuits)

1. Systems review

• Mejφ can be represented as a radial vector of length M and angle φ from the origin.

– The tip of the vector will be a point (x, y) and Mejφ = x + jy.

∗ So vertical axis is imaginary (j) and horizontal axis is real.

∗ By Pythagorean theorem (or distance formula), M =
√

x2 + y2.

∗ By trigonometry, φ = arctan2(y, x) (i.e., φ = arctan(y/x) when (x, y) in quadrant I).

– Also, Mejφ = cos(φ) + j sin(φ).

∗ Visualize a turntable with a single peg sitting at its edge.

∗ As the turntable spins (i.e., as φ increases), the peg moves around a circle.

∗ Imagine viewing the turntable from a side (rather than from the top).

· From the side, peg position oscillates back and forth with a sinusoidal trajectory.

· From two perpendicular sides, the two sinusoids are 90◦ out of phase — sine and cosine.

∗ Alternatively, realize that cos(φ) and sin(φ) are the length of the adjacent and opposite
sides of the triangle formed by Mejφ.

∗ By the identity,

cos(φ) = ejφ
+e−jφ

2
= Re

(

ejφ
)

and sin(φ) = ejφ
−e−jφ

2j
= Im

(

ejφ
)

· Add a ∠φ vector to a ∠−φ vector — imaginary parts cancel and real parts double.

· When thinking of sin(ωt) and cos(ωt), look at a rotating ejωt from the side.

∗ Notice that |ejφ| =
√

(Re(ejφ))2 + (Im(ejφ))2 =
√

cos2(φ) + sin2(φ) = 1.

– This vector is called a phasor to differentiate it from vectors with complex elements.

∗ Each element of such vectors can be represented as a phasor.

∗ So we can have vectors of phasors (e.g., ~v = [a + jb, c + jd, M1e
jφ1 , M2e

jφ2 ]).

∗ Phasors represented in polar (radial) form M∠φ , Mejφ or Cartesian form (Re, Im).

• Find transfer function from differential equation by assuming input x(t) = Xest and output
y(t) = Y est where s , σ + jω (i.e., steady-state solution).

– Then x′ = sx, x′′ = s2x, y′ = sy, y′′ = s2y. For these functions, d/dt is multiplication by s.

– Substitute derivatives and solve for y(t)/x(t). Note that est cancels and y(t)/x(t) = Y/X ,
and your solution sets Y/X equal to a ratio of s polynomials.

– For any s, complex value H(s) , Y/X scales input to get output (i.e., y(t) = H(s)Xest).

– H(s) is the transfer function. Its denominator roots describe the transient response of system.

– Transients must decay for system to reach steady-state. System is called stable in this case.

– Because est = eσteωt, real part of each pole must be negative for stability.

∗ “Poles” shape |H(s)| by pulling it up to ∞ at points like a tent pole.

∗ Numerator roots are called zeros because they pull tent to the ground.

– To determine frequency response, put tent poles and zeros in complex plane and examine
tent shape along imaginary axis (where Re = 0).

∗ If poles have σ = 0, tent is pulled to infinity at that ω frequency (i.e., resonance).

∗ Complex poles/zeros are in pairs. So tent is symmetric about real axis (i.e., Im = 0).

∗ So for 2nd-order filter, angle of positive (“upper”) pole determines damping ratio (ξ).

· Note: s2 + 2ξω0s + ω2
0 — if ξ < 1, imaginary pole located at ω0∠(180◦ − arccos(ξ)).

· RLC characteristic poly.: s2 + (R/L)s + 1/(LC) — LC sets ω0; R sets damping ξ.
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ECE 209 — Lab 5: Properties of Second-Order Circuits Notes

2. Filters review

• Corner/cutoff /“knee” frequency is where output power is half of passband power.

– If power gain is 1/2, then signal gain is 1/
√

2. Note that 20 log10

√
2 = 10 log10 2 ≈ 3 dB.

• Pass- and stop-bandwidth are separated by “corners” at top of “transition regions.”

• For near ideal performance, usually want steep transitions with sharp corners.

• Transition steepness governed by filter order (i.e., number of poles).

• Corner sharpness governed by damping factors.

3. Passive second-order filters (voltage divider is electric bell with resistance damping)

• To produce steep transitions, need high-order filters.

• Low-order filters cannot be easily cascaded with active buffers.

• Cascades of RC filters do not produce sharp knees (“many a soft knee do not a hard knee make”).

• Inductors and capacitors together (LC resonance) can greatly improve knee sharpness.

• Inductors have many undesirable properties in small-signal (i.e., not power) circuits.

4. Second-order active filters.

• Active filters allow for gain, simplicity, robustness, and can have hard “knees” without inductors.

• Can construct Sallen-Key filter topology from modification of RC cascade.

1. Start with RC section followed by second RC section (with no buffer).

– To prevent second section from loading the first, buffer is usually inserted between them.

– Buffered combination still has soft knee.

2. Buffer (e.g., use unity-gain op. amp.) the output.

3. Connect ground of first RC section to buffered output.

4. This bootstrapping sharpens knee by applying second capacitor gently rather than all at once.

5. Introduce and complete the Properties of Second-Order Circuits lab.

• Inductors are large tunable boxes in cabinet. Tune for 0.5 H. May measure RL with DMM.

• Generate step responses using SLOW square wave (e.g., ∼50 Hz).

– Set scope to trigger on input channel. Adjust horizontal/vertical scales/position to zoom.

– Capture time scale and amplitude information from scope.

• If 741-type operational amplifier is not available, use 747 (two 741-type OAs on one chip).

– 747 (and 741) part pinout on supplementary document.

– Note the supply rails! Op. amps need power from both sides to be able to work.

– Be sure to use dual ±5V supplies with a common ground. Use ±6 V if you see clipping.

– If you see a lot of noise on OA output, then add 1 µF (code 105 ) across each supply rail.

∗ Connect one bypass capacitor from positive supply to ground.

∗ Connect one bypass capacitor from negative supply to ground.

∗ Place capacitors close to operational amplifier pins and try to use short capacitor leads.

• Resistor color codes: Black, Brown, ROYGBV, Gray, White correspond to digits 0–9

–
5

Green-
6

Blue-
1

Brown = 560 Ω;
1

Brown-
0

Black-
3

Orange = 10 kΩ;
1

Brown-
8

Gray-
3

Orange = 18 kΩ

• Capacitor codes are like resistor codes (digit1/digit2/number-of-zeros) but typically use unit pF

– 0.01 µF = 103 ; 0.1 µF = 104 ; 0.068 µF = 683 or 0.068 (decimals usually indicate µF units)

• In your report, for both filters,

(i) Compare measured step responses to predicted curves from Matlab.

(ii) Plot the frequency response for the three cases in Matlab.

– Relate the frequency content of each filter to the corresponding step response.

– For example, consider how steep the filter edge is (bandwidth) and how “ringy” the
response is (damping and corner shape).
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Sample Code

Matlab Code for Step and Frequency Response of a Single Transfer Function

% Define transfer function parameters
R = 1e3; % 1 kiloOhms (resistance)
L = 0.5; % 0.5 Henry (inductance)
C = 0.01e-6; % 0.1 microFarads (capacitance)

% Define Laplace-domain variable s (as transfer function object)
s = tf ( ’s’ );

% Define new transfer function object using existing s object
H = ( 1/(L * C) )/( sˆ2 + (R/L) * s + 1/(L * C) );

% % Alternatively, could use vectors of numerator and denominator polynomial
% % coefficients:
% H = tf( [ 1/(L*C) ], [ 1 (R/L) 1/(L*C) ] );

% Generate step response in first figure
figure(1);
step( H );
grid on;

% Generate Bode plot in second figure
figure(2);
bode( H );
grid on;

Matlab Code to Overlay Several Step and Frequency Responses

% Define three cases
R1 = 1e3; L1 = 0.5; C1 = 0.01e-6;
R2 = 10e3; L2 = 0.5; C2 = 0.02e-6;
R3 = 20e3; L3 = 0.5; C3 = 0.03e-6;

% Define Laplace-domain variable s (as transfer function object)
s = tf ( ’s’ );

% Define three transfer functions
H1 = ( 1/(L1 * C1) )/( sˆ2 + (R1/L1) * s + 1/(L1 * C1) );
H2 = ( 1/(L2 * C2) )/( sˆ2 + (R2/L2) * s + 1/(L2 * C2) );
H3 = ( 1/(L3 * C3) )/( sˆ2 + (R3/L3) * s + 1/(L3 * C3) );

% Overlay three step responses in first figure
figure(1);
step( H1, ’b-’ , H2, ’g--’ , H3, ’m-.’ );
grid on;
legend( ’H_1’ , ’H_2’ , ’H_3’ );

% Overlay three Bode plots in second figure
figure(2);
bode( H1, ’b-’ , H2, ’g--’ , H3, ’m-.’ );
grid on;
legend( ’H_1’ , ’H_2’ , ’H_3’ );
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