ECE 209: Circuits and Electronics Laboratory

Notes for Lab 3 (Operational Amplifiers and First-Order Circuits)

- 1. Comments on returned lab reports.
 - In first lab report, all phase shifts should have been from quadrant III and not quadrant I.
 - Lab reports should be formatted like *reports* (i.e., **not lists**).
 - Use kHz **not** KHz or KHZ. Small k is kilo; big K is Kelvin (temp. matters to circuits).
 - For hand-drawn figures, use **engineering graph paper**, and write on the side with *no grid lines*. Photocopies will be clear of any distracting grid lines.
- 2. Operational amplifiers: see supplementary document for more information.
 - Op. amps are **useless** when not in a feedback configuration.
 - Extremely-high-gain negative feedback causes V- to track V+.
 - Set V node to V + signal; assume no current goes into the OA, and solve rest of circuit.
- 3. Linear systems: see supplementary document for more Laplace- and frequency-domain information.
 - Each input signal instant is like scaled *impulse* that causes system output to "ring" like a bell.
 - "Convolution" is the sum of all of the effects of each impulse.
 - Before convolving, we must know the "impulse response" to find each of those effects.
 - Impossible to generate an impulse in the lab. So we generate step response and differentiate.
 - For a **first-order circuit**, can determine all that matters (gain and **time constant**) from *either* impulse response or step response.
 - LTI systems with input sinusoids have **shifted** and **scaled** output *sinusoids*.
 - See supplementary document on sources of **phase shift** in LTI systems.
 - By finding magnitude and phase shift at *every* frequency, can rebuild impulse response without generating impulse or step.
 - Because signals can be represented as sums (or integrals) of sinusoids, can find output signal without doing convolution.
- 4. Introduce and complete the Operational Amplifiers and First-Order Circuits lab.
 - If 741-type operational amplifier is not available, use 747 (two 741-type OAs on one chip).
 - 747 (and 741) part pinout on supplementary document.
 - Note the supply rails! Op. amps need power from both sides to be able to work.
 - Resistor color codes: Black, Brown, ROYGBV, Gray, White correspond to digits 0-9
 - Brown-Black-Red = $102 = 1000 = 1 \text{ k}\Omega$
 - Brown-Black-Orange = $103 = 10000 = 10 \text{ k}\Omega$
 - Yellow-Violet-Orange = $473 = 47000 = 47 \,\mathrm{k}\Omega$
 - Capacitor codes are like resistor codes (digit₁/digit₂/number-of-zeros) but typically use unit pF
 - For example, $105 = 10\underline{00000} \, \text{pF} = 1000 \, \text{nF} = 1 \, \mu \text{F}$
 - For this lab, $0.01 \,\mu\text{F} = 10 \,\text{nF} = 10000 \,\text{pF} = 103$
 - Make sure to use dual $\pm 12 \, \text{V}$ supplies with a common ground in OA circuits.
 - Step response of high-pass filter has 2 V peak because it is initially charged to 1 V.
 - The previous 1 V-to-−1 V step left the capacitor with 1 V charge to make the output 0 V.
 - Note that the magnitude of the -1 V-to-1 V step matches the 2 V output jump.
 - For lab report: Measured (experimental) versus expected (theoretical).

Sample Code

```
%%%%%%%%%%% Data from Measurements
% Store the frequency, measured input Vipp, output Vopp, and Lissajous vertical
% intersection data.
f = [1 \ 2 \ 10 \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \ 100] *100;
vopp = [1.996 1.984 1.694 1.245 0.937 0.739 0.607 0.513 0.443 0.390 0.349 0.314];
deltaY = [0.125 0.247 0.901 0.975 0.828 0.687 0.578 0.496 0.432 0.383 0.343 0.310];
% Calculate gain vector (in dB) and phase (./ is element-by-element division).
gaindB = 20 * log 10 ( vopp./vipp );
phase = -asin(deltaY./vopp)*180/pi;
                                       % For LPF
% phase = asin(deltaY./vopp)*180/pi;
                                     % For HPF
%%%%%%%%% Theoretical Predictions (from transfer function)
% For theoretical curves, 1000 j-omega points in frequency range.
ftheory = linspace(min(f), max(f), 1000);
s = j*2*pi*ftheory;
\mbox{\%} For transfer function, store R and C values (change as necessary!).
R = 10000;
C = 0.01e-6;
% Evaluate transfer function at each ftheory.
                                      % For LPF
H = 1./(s*R*C + 1);
                                       % For HPF
% H = s*R*C./(s*R*C + 1);
% Find theoretical gain (dB) and phase (degrees).
gaintheorydB = 20*log10(abs(H));
phasetheory = angle(H)*180/pi;
%%%%%%%%% Bode plot of measurements and expectations
%%%%% Magnitude subplot: Measured and theoretical overlayed
% Put magnitude plot in top row of 2 row by 1 column figure.
subplot(2,1,1);
semilogx( f, gaindB, '.-', ftheory, gaintheorydB, '--' );  % dB Gain
                                                            % Add a grid
grid on;
% Add axis labels (with units!) and title.
xlabel('Frequency (Hz)'); ylabel('Gain (dB)'); title('Gain magnitude');
%%%% Phase subplot: Measured and theoretical overlayed
% Put phase plot in bottom row of 2 row by 1 column figure.
subplot(2,1,2);
semilogx( f, phase, '.-', ftheory, phasetheory, '--' );
grid on;
% Add axis labels (with units!) and title.
xlabel(\textit{`Frequency (Hz)'}); \ ylabel(\textit{`Phase shift (degrees)'}); \ title(\textit{`Phase shift'});
% Use the figure's "File" menu to save the figure in a desirable
% file format (e.g., EPS or PNG) for inclusion in your report.
```