Lissajous figures*

Lab 1: Introduction to Instrumentation

ECE 209: Circuits and Electronics Laboratory

A Lissajous ("LEE-suh-zhoo") figure is a parametric plot of the harmonic system

$$
\{\begin{array}{l}
x(t)=A_{x} \sin \left(\omega_{x} t+\phi\right), \\
y(t)=A_{y} \sin \left(\omega_{y} t+\phi+\delta\right)
\end{array} \quad \text { (i.e., } y(x)=A_{y} \sin (\overbrace{\frac{\omega_{y}}{\omega_{x}}\left(\arcsin \left(\frac{x}{A_{x}}\right)-\phi\right)}^{\omega_{y} t}+\phi-\delta) \text { where }|x| \leq A_{x}) .
$$

In our case, we plot an input $x(t)$ and output $y(t)$ of a linear time-invariant (LTI) system. Because complex exponentials are eigenfunctions of LTI systems and sinusoids are sums of complex exponentials, the output frequency will match the input frequency (i.e., $\omega_{x}=\omega_{y}=\omega=2 \pi f$). Our LTI system (i.e., the phase-shifter circuit) is an all-pass filter, and so it ensures that $A_{y}=A_{x}=A$. So we are consider the simpler system

$$
\{\begin{array}{l}
x(t)=A \sin (2 \pi f t+\phi), \tag{1}\\
y(t)=A \sin (2 \pi f t+\phi+\delta)
\end{array} \quad \text { (i.e., } \underbrace{y(x)=A \sin \left(\arcsin \left(\frac{x}{A}\right)-\delta\right)}_{x-y \text { graph has no dependence on } \phi .} \text { where }|x| \leq A)
$$

and we use a Lissajous figure to find the phase shift δ. We obtain the Lissajous figure with the oscilloscope in its $X-Y$ mode with the input of our system tied to the X channel and the output tied to the Y channel. At each instant, the scope plots a dot with the input X sample as the horizontal coordinate and the output Y sample as the vertical coordinate. Because the dots persist on the screen for a short time, their "ghosts" form a Lissajous figure on the screen. To see the rotation direction, we can slow down the input frequency.

[^0]So if we know both the angle of the major axis of the Lissajous curve and the direction of the curve's rotation, then we can determine the quadrant of the phase shift δ. That is,

$$
\begin{cases}\delta=0^{\circ} & \text { if line with positive slope } \tag{2}\\ 0^{\circ}>\delta>-90^{\circ} & \text { if counter clockwise and positive slope } \\ \delta=-90^{\circ} & \text { if counter clockwise circle } \\ -90^{\circ}>\delta>-180^{\circ} & \text { if counter clockwise and negative slope } \\ \delta=-180^{\circ} & \text { if line with negative slope } \\ -180^{\circ}>\delta>-270^{\circ} & \text { if clockwise and negative slope } \\ \delta=-270^{\circ} & \text { if clockwise circle } \\ -270^{\circ}>\delta>-360^{\circ} & \text { if clockwise and positive slope }\end{cases}
$$

where we consider only negative δ because physical systems are casual and will only contribute delay. When $\delta=0^{\circ}$, the input and output are said to be "in phase." Alternatively, when $\delta=-180^{\circ}$, the input and output are inverted copies of each other and are said to be "out of phase" or simply "inverted." In the other two cases, when $\delta=-90^{\circ}$ or $\delta=-270^{\circ}$, the input and output are said to be "in quadrature" (i.e., they are a quarter wavelength away from being in phase). Quadrature motion is perfectly circular and has a wide range of applications throughout engineering.

Finding phase shift from measurements: To determine the precise phase shift δ from measurements, we must use Equation (1). If we know the sinusoidal amplitude A and a measurement $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$ from time t_{0}, then we can use $x\left(t_{0}\right)$ to solve for $2 \pi f t_{0}+\phi$, and then we can use $y\left(t_{0}\right)$ to solve for δ. That is,

$$
\begin{equation*}
\delta=\arcsin \left(\frac{x\left(t_{0}\right)}{A}\right)-\arcsin \left(\frac{y\left(t_{0}\right)}{A}\right) \tag{3}
\end{equation*}
$$

Because each arcsin can match as many as two angles in any 360° range, there are four possible δ - one for each of the four quadrants. So we use Equation (2) to pick the correct δ out of the four.

Simple method for the laboratory: The following procedure helps prevent measurement errors from nonzero DC offset. If a measurement at time t_{0} has $x\left(t_{0}\right)=0$, then Equation (3) becomes $\delta=\arcsin (0)-$ $\arcsin \left(y\left(t_{0}\right) / A\right)$. This case corresponds to finding the point where the Lissajous figure intersects with the vertical axis.

$$
\begin{aligned}
& \text { Your calculator gives } \\
& \text { you the principal Arcsin. } \\
& \text { Let } \theta \triangleq \operatorname{Arcsin}\left(\frac{2 y\left(t_{0}\right)}{2 A}\right) \text {. } \\
& \text { Then } 0^{\circ} \leq \theta \leq 90^{\circ} \text {, and } \\
& \begin{array}{ll}
\vdots \\
\vdots \\
\vdots & \\
-360^{\circ}+\theta & (\mathrm{Q}-\mathrm{I}), \text { or } \\
-180^{\circ}-\theta & (\mathrm{Q}-\mathrm{II}), \text { or } \\
-180^{\circ}+\theta & (\mathrm{Q}-\mathrm{III}), \text { or } \\
-\theta & (\mathrm{Q}-\mathrm{IV}) .
\end{array}
\end{aligned}
$$

Y oscilloscope channel
(note: in this example, it must be that δ is in quadrant II or III because the major axis has a negative slope)

1. Use X cursors and X position knob to horizontally center the Lissajous figure on the on-screen axes.
2. Use Y cursors to measure the distance (i.e., ΔY) between two intersection points (i.e., find $2 y\left(t_{0}\right)$).
3. Use Y cursors to measure the maximum vertical span (i.e., $2 A$).
4. Let $\theta \triangleq \operatorname{Arcsin}\left(2 y\left(t_{0}\right) /(2 A)\right)$ and choose $\delta \in\left\{-\theta,-180^{\circ}+\theta,-180^{\circ}-\theta,-360^{\circ}+\theta\right\}$ using Equation (2).

- Our phase-shifting circuit delays by no more than 180°, and so δ is in quadrant III or IV. Further, the major axis in this example has a negative slope, and so δ is quadrant III (i.e., $\delta=-180^{\circ}+\theta$).

[^0]: *Document from http://www.tedpavlic.com/teaching/osu/ece209/. Source code at http://hg.tedpavlic.com/ece209/.

