Lissajous figures*

Lab 1: Introduction to Instrumentation

ECE 209: Circuits and Electronics Laboratory

A Lissajous ("LEE-suh-zhoo") figure is a parametric plot of the harmonic system

$$\begin{cases} x(t) = A_x \sin(\omega_x t + \phi), \\ y(t) = A_y \sin(\omega_y t + \phi + \delta) \end{cases} \quad (i.e., \ y(x) = A_y \sin\left(\frac{\omega_y}{\omega_x} \left(\arcsin(\frac{x}{A_x}) - \phi\right) + \phi - \delta\right) \text{ where } |x| \le A_x). \end{cases}$$

In our case, we plot an input x(t) and output y(t) of a linear time-invariant (LTI) system. Because complex exponentials are eigenfunctions of LTI systems and sinusoids are sums of complex exponentials, the output frequency will match the input frequency (i.e., $\omega_x = \omega_y = \omega = 2\pi f$). Our LTI system (i.e., the phase-shifter circuit) is an all-pass filter, and so it ensures that $A_y = A_x = A$. So we are consider the simpler system

$$\begin{cases} x(t) = A\sin(2\pi ft + \phi), \\ y(t) = A\sin(2\pi ft + \phi + \delta) \end{cases} \quad (i.e., \underbrace{y(x) = A\sin\left(\arcsin\left(\frac{x}{A}\right) - \delta\right)}_{x = u \text{ graph has no dependence on } \phi} \text{ where } |x| \le A), \tag{1}$$

wat

and we use a Lissajous figure to find the phase shift δ . We obtain the Lissajous figure with the oscilloscope in its X-Y mode with the input of our system tied to the X channel and the output tied to the Y channel. At each instant, the scope plots a dot with the input X sample as the horizontal coordinate and the output Y sample as the vertical coordinate. Because the dots persist on the screen for a short time, their "ghosts" form a Lissajous figure on the screen. To see the rotation direction, we can slow down the input frequency.

^{*}Document from http://www.tedpavlic.com/teaching/osu/ece209/. Source code at http://hg.tedpavlic.com/ece209/.

So if we know **both** the angle of the major axis of the Lissajous curve **and** the direction of the curve's rotation, then we can determine the quadrant of the phase shift δ . That is,

	$\delta = 0^{\circ}$	if <i>line</i> with positive slope	(2)
	$0^\circ > \delta > -90^\circ$	if counter clockwise and positive slope	
	$\delta = -90^{\circ}$	if <i>line</i> with positive slope if counter clockwise and positive slope if counter clockwise <i>circle</i> if counter clockwise and negative slope if <i>line</i> with negative slope	
J	$-90^\circ > \delta > -180^\circ$	if counter clockwise and negative slope	
	$\delta = -180^\circ$	if <i>line</i> with negative slope	
	$-180^\circ > \delta > -270^\circ$	if clockwise and negative slope	
	$\delta = -270^\circ$	if clockwise <i>circle</i>	
	$-270^{\circ} > \delta > -360^{\circ}$	if clockwise and positive slope	

where we consider only negative δ because physical systems are casual and will only contribute delay. When $\delta = 0^{\circ}$, the input and output are said to be "in phase." Alternatively, when $\delta = -180^{\circ}$, the input and output are inverted copies of each other and are said to be "out of phase" or simply "inverted." In the other two cases, when $\delta = -90^{\circ}$ or $\delta = -270^{\circ}$, the input and output are said to be "in **quadrature**" (i.e., they are a quarter wavelength away from being in phase). Quadrature motion is perfectly circular and has a wide range of applications throughout engineering.

Finding phase shift from measurements: To determine the precise phase shift δ from measurements, we must use Equation (1). If we know the sinusoidal amplitude A and a measurement $(x(t_0), y(t_0))$ from time t_0 , then we can use $x(t_0)$ to solve for $2\pi f t_0 + \phi$, and then we can use $y(t_0)$ to solve for δ . That is,

$$\delta = \arcsin\left(\frac{x(t_0)}{A}\right) - \arcsin\left(\frac{y(t_0)}{A}\right). \tag{3}$$

Because each arcsin can match as many as **two** angles in any 360° range, there are four possible δ — one for each of the four quadrants. So we use Equation (2) to pick the correct δ out of the four.

Simple method for the laboratory: The following procedure helps prevent measurement errors from nonzero DC offset. If a measurement at time t_0 has $x(t_0) = 0$, then Equation (3) becomes $\delta = \arcsin(0) - \arcsin(y(t_0)/A)$. This case corresponds to finding the point where the Lissajous figure intersects with the vertical axis.

1. Use X cursors and X position knob to *horizontally* center the Lissajous figure on the on-screen axes.

- 2. Use Y cursors to measure the distance (i.e., ΔY) between two intersection points (i.e., find $2y(t_0)$).
- 3. Use Y cursors to measure the maximum vertical span (i.e., 2A).
- 4. Let $\theta \triangleq \operatorname{Arcsin}(2y(t_0)/(2A))$ and choose $\delta \in \{-\theta, -180^\circ + \theta, -180^\circ \theta, -360^\circ + \theta\}$ using Equation (2).
 - Our phase-shifting circuit delays by no more than 180° , and so δ is in quadrant III or IV. Further, the major axis in this example has a negative slope, and so δ is quadrant III (i.e., $\delta = -180^{\circ} + \theta$).