% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z % Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z % Digits 0 1 2 3 4 5 6 7 8 9 % Exclamation ! Double quote " Hash (number) # % Dollar $ Percent % Ampersand & % Acute accent ' Left paren ( Right paren ) % Asterisk * Plus + Comma , % Minus - Point . Solidus / % Colon : Semicolon ; Less than < % Equals = Greater than > Question mark ? % At @ Left bracket [ Backslash \ % Right bracket ] Circumflex ^ Underscore _ % Grave accent ` Left brace { Vertical bar | % Right brace } Tilde ~ % % Spring 2007 Masters Thesis Defense: Optimal Foraging Theory Revisited % % (c) Copyright 2007 by Theodore P. Pavlic % % ---------------------------------------------------------------------| % --------------------------- 72 characters ---------------------------| % ---------------------------------------------------------------------| %%faketop{Preamble} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[ size=12pt, paper=screen, orient=landscape, mode=present, display=slides, style=aggie, blackslide, % does not work with randomdots %clock, hlentries=true, hlsections=true, ]{powerdot} %%fakepart{Slide Show Setup} % ---------------------------------------------------------------------| % This is the default transition effect %\newcommand{\defaulttransition}{Replace} \newcommand{\defaulttransition}{Wipe /D 0 /Di 0} %\newcommand{\defaulttransition}{Split /D 0} % This is the transition effect used for overlays \newcommand{\overlaytransition}{Replace} % This provides the setup for powerdot \pdsetup{ trans=\defaulttransition, randomdots=false, % does not work with blackslide } %%fakesection{Tools for Changing Global Transition Effect} % .....................................................................| % This lets us change the global transition effect on-the-fly \makeatletter \def\settrans#1{\gdef\pd@@trans{#1}} \makeatother \makeatletter \def\showall{\pst@Verb{(0) BOL}} \makeatother % Command to change global transitions before a slide with overlays \newcommand{\overtrans}{\settrans{\overlaytransition}} % Command to change global transitions after a slide with overlays \newcommand{\deftrans}{\settrans{\defaulttransition}} %%fakesection{Footnotes and Citations} % .....................................................................| % Include natbib and bibentry for \citeauthor and \bibentry \usepackage{natbib,bibentry} % Make footnotes extra small \newcommand{\fn}[1]{\footnote{{\tiny #1}}} % Create a citation command that creates footnotes \newcommand{\cp}[1]{\fn{\bibentry{#1}}} \newcommand{\ct}[1]{\citeauthor{#1}\fn{\bibentry{#1}}} %%fakepart{Modern graphics support} % ---------------------------------------------------------------------| % Use subfig for subfigures \usepackage[nearskip=-3pt,captionskip=4pt, listofformat=subsimple,labelformat=simple]{subfig} \captionsetup[subfloat]{listofindent=4em} % Add subfigures to the List of Figures \setcounter{lofdepth}{2} % Make sure subfigures have parentheses around them everywhere \renewcommand\thesubfigure{(\alph{subfigure})} % Use graphicx for including graphics \usepackage{graphicx} % Use pict2e for more advanced picture environment support \usepackage{pict2e} % Support for colors \usepackage{color} \definecolor{darkgreen}{rgb}{0,.5,0} % Support for pstricks and pstricks reference nodes \usepackage{pstricks, pst-node} %%fakepart{Useful packages} %----------------------------------------------------------------------| % Gives \ifthenelse \usepackage{ifthen} % Let us add lengths together (e.g., in \settowidth below) \usepackage{calc} % Give us commands two two optional arguments \usepackage{twoopt} % This is handled elsewhere in the presentation file % % Citations: Numbered (e.g. [1]); Use \citet,\citep,\citeauthor,etc. % \usepackage[numbers]{natbib} % Tables -- gives us \hline[space] that puts space after \hline \usepackage{tabls} % Tables -- gives us horizontal rules that separate columns rather than % vertical \usepackage{booktabs} % paralist cannot be used with powerdot because of its dependence on % enumitem. enumitem v2 does not work with paralist (while enumitem v1 % does) % % Give us nicer listing environments, especially for listing within % % paragraphs. Also adds item labels that can be automatically generated % % and labeled like equations. Compact environments: compactenum and % % compactitem % \usepackage{paralist} % Fix referencing of nested enumerations (put a dot between counters) \makeatletter \renewcommand{\theenumii}{\arabic{enumii}} \renewcommand{\labelenumii}{\theenumi.\theenumii} \renewcommand{\p@enumii}{\theenumi.} \makeatother % Mathematical symbols, etc. \usepackage{amssymb,amsfonts,amsmath,amscd,accents,mathrsfs} %%fakepart{These Document Compatibility} % ---------------------------------------------------------------------| %%%% Macros \input{oft_0pre2_macros} %%%% Acronym Stuff % Our symbol for default argument \newcommand{\defarg}{!*!,!} %%fakeparagraph{acro command definition} %----------------------------------------------------------------------- \newcommandtwoopt{\acro}[4][\defarg][\defarg]{% \ifthenelse{\equal{#1}{\defarg}}% {#4~(#3)}% {\ifthenelse{\equal{#1}{}}{#3}{#1}}} %----------------------------------------------------------------------- %%fakeparagraph{ac command definition} %----------------------------------------------------------------------- % A text-only reference to the acronym \newcommand{\ac}[1]{#1} % % A reference to the acronym linked to its anchor % \newcommand{\ac}[1]{\hyperlink{def:#1}{#1}} % % A reference to the acronym linked to its page % \newcommand{\ac}[1]{\hyperlink{page.\pageref*{def:#1}}{#1}} %----------------------------------------------------------------------- %%faketop{Title Information} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} % Setup title page \title{Optimal Foraging Theory Revisited\\% {\small Masters Thesis Defense and Doctoral Qualifier Examination% \fn{Typeset with \LaTeX{} using \texttt{powerdot}.}}} \author{Theodore (Ted) Pavlic} \date{June 5, 2007} % Setup for citations \bibliographystyle{plainnat} \nobibliography{optimal_foraging_theory} % Title Slide \maketitle %%faketop{Main Document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{slide}[toc=,bm=]{Overview} \tableofcontents[content=sections] \end{slide} %\begin{slide}{a slide} %\overtrans % Here are two columns. % \twocolumn % { % \onslide{1,2}{left}\\ % \onslide{3}{done} % }{ % \onslide{2,3}{right} % } % Those were two columns. %\deftrans %\end{slide} \section[slide=false]{Introduction} \begin{slide}[toc=,bm=]{Introduction} % \begin{itemize} \item<2-> Goal\onslide*{3-}{: Discover the physics of high-level control} \item<4-> How to model? \item<5-> How to measure performance? \item<6-> High-level actuators are behaviors \item<7-> Behavioral ecology replaces physics \end{itemize} % \end{slide} \section{Solitary Agent Model} \begin{slide}[toc=\ac{OFT} Cycle]{\ac{OFT} Renewal Cycle} \begin{figure}[!ht]\centering \begin{picture}(265,42)(0,0) \thinlines \put(0,25){\rnode{oftsearchleft}{\makebox(0,0){}}} \put(33,25){\makebox(0,0)[l]{\rnode{oftsearch}{Search}}} \ncline[nodesepB=3pt]{->}{oftsearchleft}{oftsearch} \put(100,25){\makebox(0,0)[l]{\rnode{oftencounter}{Encounter}}} \ncline[nodesep=3pt]{->}{oftsearch}{oftencounter} % \put(210,37){\makebox(0,0)[l]{\rnode{oftprocess}{Process}}} \ncdiag[nodesep=3pt,armA=1cm,armB=0cm,angleA=0,angleB=180]{->}{oftencounter}{oftprocess} \put(265,37){\rnode{oftprocessright}{\makebox(0,0){}}} \ncline[nodesepA=3pt]{-}{oftprocess}{oftprocessright} % \put(210,13){\makebox(0,0)[l]{\rnode{oftignore}{Ignore}}} \ncdiag[nodesep=3pt,armA=1cm,armB=0cm,angleA=0,angleB=180]{->}{oftencounter}{oftignore} \put(265,13){\rnode{oftignoreright}{\makebox(0,0){}}} \ncline[nodesepA=3pt]{-}{oftignore}{oftignoreright} % \ncline{-}{oftprocessright}{oftignoreright} \ncbar[angle=-90]{-}{oftignoreright}{oftsearchleft} % \put(27,33){\circle*{5}} \end{picture} \caption{Classical \ac{OFT} Markov Renewal Process} \label{fig:oft_markov_process} \end{figure} \onslide*{2-13}{\textbf{Parameters and Decision Variables}} \onslide*{3,4,5}{\begin{itemize} \item[$n$:]<3-> Number of task types. \item[$\lambda_i$:]<4-> {\color{blue}Poisson} encounter rate with tasks of type $i$ (encounters/second). \item[$\lambda$:]<5-> {\color{darkgreen}Merged Poisson} encounter rate with all tasks (encounters/second). \end{itemize}} % \onslide*{6}{\vspace{\stretch{1}} \begin{equation*} \boxed{{\color{darkgreen}\lambda} = \sum\limits_{i=1}^n {\color{blue}\lambda_i}} \end{equation*} \vspace{\stretch{1}}} % \onslide*{7,8}{%\vspace{\stretch{1}} \begin{itemize} \item[$c^s$:]<7-> Cost rate for searching (points/second). \item[$\frac{c^s}{\lambda}$:]<8-> Average cycle {\color{red}search} cost (points/encounter). \end{itemize} \vspace{\stretch{1}}} % \onslide*{9,10}{%\vspace{\stretch{1}} \begin{itemize} \item[$p_i$:]<9-> Probability of processing a task of type $i$. \item[$\tau_i$:]<10-> Average time processing a task of type $i$ (seconds). \end{itemize} \vspace{\stretch{1}}} % \onslide*{11,12,13}{%\vspace{\stretch{1}} \begin{itemize} \settowidth{\labelwidth}{\hfil$g_i(\tau_i) - c_i \tau_i$}% \item[$g_i(\tau_i)$:]<11-> Average gain from processing a task of type $i$ (points). \item[$c_i$:]<12-> Average cost rate while processing a task of type $i$ (points/second). \item[$g_i(\tau_i) - c_i \tau_i$:]<13> Average net gain from processing a task of type $i$ (points). \end{itemize} \vspace{\stretch{1}}} % \onslide*{14-18}{\textbf{Random Variables}} % \onslide*{15,16,17}{%\vspace{\stretch{1}} \begin{itemize} \item[$g$:]<15-> Gross {\color{red}processing} gain from $k\th$ cycle. \item[$c$:]<16-> {\color{red}Processing} cost from $k\th$ cycle. \item[$\tau$:]<17-> {\color{red}Processing} time from $k\th$ cycle. \end{itemize} \vspace{\stretch{1}}} % \onslide*{18}{%\vspace{\stretch{1}} \begin{itemize} \item[$\oft{G}_k$:] {\color{darkgreen}Total} net gain from $k\th$ cycle. \item[$\oft{C}_k$:] {\color{darkgreen}Total} cost from $k\th$ cycle. \item[$\oft{T}_k$:] {\color{darkgreen}Total} time from $k\th$ cycle. \end{itemize} \vspace{\stretch{1}}} % \onslide*{19,20}{\textbf{Random Processes}} % \onslide*{20}{\vspace{\stretch{1}} \begin{equation*} \boxed{ \oft{G}^N \triangleq \sum\limits_{k=1}^N \oft{G}_k } \qquad \boxed{ \oft{C}^N \triangleq \sum\limits_{k=1}^N \oft{C}_k } \qquad \boxed{ \oft{T}^N \triangleq \sum\limits_{k=1}^N \oft{T}_k } \end{equation*} \vspace{\stretch{1}}} % \onslide*{21-25}{\textbf{Statistics}} % \onslide*{22}{\vspace{\stretch{1}} \begin{align*} \overline{g} \triangleq \E\left(g\right) &= \sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i g_i(\tau_i)\\ \overline{c} \triangleq \E\left(c\right) &= \sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i c_i \tau_i\\ \overline{\tau} \triangleq \E\left(\tau\right) &= \sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i \tau_i \end{align*} \vspace{\stretch{1}}} % \onslide*{23}{\vspace{\stretch{1}} \begin{equation*} \var\left(g-c\right) = \sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i ( g_i(\tau_i) - \overline{g} )^2 \end{equation*} \vspace{\stretch{1}}} % \onslide*{24}{\vspace{\stretch{1}} \begin{align*} \E\left( \oft{G}^N \right) = N \E\left( \oft{G}_1 \right) &= N \left( \overline{g} - \overline{c} - \frac{c^s}{\lambda} \right)\\ \E\left( \oft{C}^N \right) = N \E\left( \oft{C}_1 \right) &= N \left( \overline{c} + \frac{c^s}{\lambda} \right)\\ \E\left( \oft{T}^N \right) = N \E\left( \oft{T}_1 \right) &= N \left( \overline{\tau} + \frac{1}{\lambda} \right) \end{align*} \vspace{\stretch{1}}} % \onslide*{25}{\vspace{\stretch{1}} \begin{equation*} \var\left( \oft{G}^N \right) = N \var\left( \oft{G}_1 \right) = N \left( \var\left(\overline{g} - \overline{c}\right) + \left( \frac{c^s}{\lambda} \right)^2 \right) \end{equation*} \vspace{\stretch{1}}} % \onslide*{26}{\vspace{\stretch{1}} \begin{center}\textbf{Finite Lifetime?}\end{center} \vspace{\stretch{1}}} \end{slide} \begin{slide}[toc=Processing Cycle]{Processing-Only Renewal Cycle} \begin{figure}[!ht]\centering \begin{picture}(230,30)(0,0) \thinlines \put(0,20){\rnode{searchleft}{\makebox(0,0){}}} \put(33,20){\makebox(0,0)[l]{\rnode{search}{Find and Process}}} \put(230,20){\rnode{searchright}{\makebox(0,0){}}} \ncline[nodesepB=3pt]{->}{searchleft}{search} \ncline[nodesepA=3pt]{-}{search}{searchright} \ncbar[angle=-90,arm=.65cm]{-}{searchright}{searchleft} % \put(27,28){\circle*{5}} \end{picture} \caption{Finite Task Lifetime Markov Renewal Process} \label{fig:markov_process} \end{figure} \onslide*{2-6}{\textbf{Split Poisson Parameters}} \onslide*{3,4,5,6}{\begin{itemize} \item[$\lambda^p_i$:]<3-> {\color{blue}Split} Poisson encounter rate with {\color{blue}processed} tasks of type $i$ (encounters/second). \item[$\lambda^p$:]<5-> {\color{darkgreen}Merged} {\color{blue}Split} Poisson encounter rate with all {\color{blue}processed} tasks (encounters/second). \end{itemize} \showall \begin{equation*} \onslide{4-}{\boxed{\lambda^p_i \triangleq p_i \lambda_i}} \qquad \qquad \onslide{6-}{\boxed{\lambda^p \triangleq \sum\limits_{i=1}^n \lambda^p_i}} \end{equation*}} % \onslide*{7-9}{\textbf{Random Variables}} % \onslide*{8}{\begin{itemize} \item[$g^p$:] Gross processing gain from $k\th$ {\color{blue}processing} cycle. \item[$c^p$:] Processing cost from $k\th$ {\color{blue}processing} cycle. \item[$\tau^p$:] Processing time from $k\th$ {\color{blue}processing} cycle. \end{itemize} \vspace{\stretch{1}}} % \onslide*{9}{\begin{itemize} \item[$G_k$:] Total net gain from $k\th$ {\color{blue}processing} cycle. \item[$C_k$:] Total cost from $k\th$ {\color{blue}processing} cycle. \item[$T_k$:] Total time from $k\th$ {\color{blue}processing} cycle. \end{itemize} \vspace{\stretch{1}}} % \onslide*{10,11,12}{\textbf{Random Processes}} % \onslide*{11}{\vspace{\stretch{1}} \begin{equation*} \boxed{ G^{N^p} \triangleq \sum\limits_{k=1}^{N^p} G_k } \qquad \boxed{ C^{N^p} \triangleq \sum\limits_{k=1}^{N^p} C_k } \qquad \boxed{ T^{N^p} \triangleq \sum\limits_{k=1}^{N^p} T_k } \end{equation*} \vspace{\stretch{1}}} % \onslide*{12}{\vspace{\stretch{1}} \begin{equation*} \boxed{ G^{\color{red}N^p} \triangleq \sum\limits_{k=1}^{{\color{red}N^p}} G_k } \qquad \boxed{ C^{\color{darkgreen}N^p} \triangleq \sum\limits_{k=1}^{{\color{darkgreen}N^p}} C_k } \qquad \boxed{ T^{\color{blue}N^p} \triangleq \sum\limits_{k=1}^{{\color{blue}N^p}} T_k } \end{equation*} \vspace{\stretch{1}}} % \onslide*{13-17}{\textbf{Statistics}} % \onslide*{14}{\vspace{\stretch{1}} \begin{align*} \overline{g^p} \triangleq \E\left(g^p\right) &= \sum\limits_{i=1}^n \frac{\lambda^p_i}{\lambda^p} g_i(\tau_i)\\ \overline{c^p} \triangleq \E\left(c^p\right) &= \sum\limits_{i=1}^n \frac{\lambda^p_i}{\lambda^p} c_i \tau_i\\ \overline{\tau^p} \triangleq \E\left(\tau^p\right) &= \sum\limits_{i=1}^n \frac{\lambda^p_i}{\lambda^p} \tau_i \end{align*} \vspace{\stretch{1}}} % \onslide*{15}{\vspace{\stretch{1}} \begin{equation*} \var\left(g^p-c^p\right) = \sum\limits_{i=1}^n \frac{\lambda^p_i}{\lambda^p} ( g_i(\tau_i) - \overline{g^p} )^2 \end{equation*} \vspace{\stretch{1}}} % \onslide*{16}{\vspace{\stretch{1}} \begin{align*} \E\left( G^{{\color{red}N^p}} \right) = {\color{red}N^p} \E\left( G_1 \right) &= {\color{red}N^p} \left( \overline{g^p} - \overline{c^p} - \frac{c^s}{\lambda^p} \right)\\ \E\left( C^{{\color{darkgreen}N^p}} \right) = {\color{darkgreen}N^p} \E\left( C_1 \right) &= {\color{darkgreen}N^p} \left( \overline{c^p} + \frac{c^s}{\lambda^p} \right)\\ \E\left( T^{{\color{blue}N^p}} \right) = {\color{blue}N^p} \E\left( T_1 \right) &= {\color{blue}N^p} \left( \overline{\tau^p} + \frac{1}{\lambda^p} \right) \end{align*} \vspace{\stretch{1}}} % \onslide*{17}{\vspace{\stretch{1}} \begin{equation*} \var\left( G^{{\color{red}N^p}} \right) = {\color{red}N^p} \var\left( G_1 \right) = {\color{red}N^p} \left( \var\left(\overline{g^p} - \overline{c^p}\right) + \left( \frac{c^s}{\lambda^p} \right)^2 \right) \end{equation*} \vspace{\stretch{1}}} % \end{slide} \section{Optimization} \begin{slide}[toc=\ac{OFT} Rate]{Importance of Rate in Classical \ac{OFT}} % \onslide*{2,3,4,5,6,7,8,9,10,11}{ \begin{itemize} \item<9-> \onslide*{9}{{\color{darkgreen}Time maximizer}}\onslide*{10-}{Time maximizer} when net gain is negative \item<2-> \onslide*{2-5,7-}{Time minimizer}\onslide*{6}{{\color{red}Time minimizer}}\onslide*{9-}{ when net gain is positive} \item<3-> \onslide*{2-6,8-}{Net gain maximizer}\onslide*{7}{{\color{darkgreen}Net gain maximizer}} \item<4-> \onslide*{2-7,9-}{Lifetime}\onslide*{8}{{\color{blue}Lifetime}} pressure \end{itemize} \vspace{\stretch{1}} \showall \onslide{5,6,7,8,9,10,11}{\begin{equation*} \onslide*{5-7,9-}{\aslim\limits_{N \to \infty}} \onslide*{8}{\aslim\limits_{N \to {\color{blue}\infty}}} \onslide*{5,8,10-}{\frac{ \oft{G}^N }{ \oft{T}^N }} \onslide*{6}{\frac{ \oft{G}^N }{\color{red}\oft{T}^N}} \onslide*{7}{\frac{\color{darkgreen}\oft{G}^N}{ \oft{T}^N }} \onslide*{9}{\frac{ \oft{G}^N }{\color{darkgreen}\oft{T}^N}} \onslide{10,11}{= \ovalnode[linecolor=blue]{oftrate}{\onslide*{5,8,10}{\frac{ \E\Bigl(\oft{G}_1\Bigr) }{ \E\Bigl(\oft{T}_1\Bigr) }}\onslide*{11}{\frac{ \E\Bigl({\color{magenta}G_1}\Bigr) }{\E\Bigl({\color{magenta}T_1}\Bigr) }} \onslide*{6}{\frac{ \E\Bigl(\oft{G}_1\Bigr) }{\color{red}\E\Bigl(\oft{T}_1\Bigr)}} \onslide*{7}{\frac{\color{darkgreen}\E\Bigl(\oft{G}_1\Bigr)}{ \E\Bigl(\oft{T}_1\Bigr) }} \onslide*{9}{\frac{ \E\Bigl(\oft{G}_1\Bigr) }{\color{darkgreen}\E\Bigl(\oft{T}_1\Bigr)}}} =} \onslide*{5-7,9-}{\lim\limits_{N \to \infty}} \onslide*{8}{\lim\limits_{N \to {\color{blue}\infty}}} \onslide*{5,8,10-}{\E\left( \frac{ \oft{G}^N }{ \oft{T}^N } \right)} \onslide*{6}{\E\left( \frac{ \oft{G}^N }{\color{red}\oft{T}^N} \right)} \onslide*{7}{\E\left( \frac{\color{darkgreen}\oft{G}^N}{ \oft{T}^N } \right)} \onslide*{9}{\E\left( \frac{ \oft{G}^N }{\color{darkgreen}\oft{T}^N} \right)} \end{equation*}} \vspace{\stretch{1}}} % \end{slide} \begin{wideslide}[toc=\ac{OFT} Optimization]{Rate Maximization in Classical \ac{OFT}} \vspace{\stretch{1}} \begin{figure}[!ht]\centering \begin{picture}(100,109)(0,0) \onslide{2-}% {% \put(50, 54.5){% \makebox(0,0){\scalebox{0.9}{\framebox(87.5,95){ \shortstack[c]% {% \onslide{4-}% {$\E(\oft{G}_1) = g_1(\tau_1)$}\\% \onslide{4-}% {$\E(\oft{T}_1) = \tau_1 + \frac{1}{\lambda}$}\\% \onslide*{2-4}% {$\oft{\gamma} \triangleq \frac{\E(\oft{G}_1)}% {\E(\oft{T}_1)}$\\}% \onslide*{5-}% {$\oft{\gamma} \triangleq \frac{g_1(\tau_1)}% {\tau_1 + \frac{1}{\lambda}}$\\}% \onslide{3-}% {$\lambda = \lambda_1$, $p_1 = 1$\\}% \onslide{10-}% {$\lozenge^* \triangleq \max\left\{\lozenge\right\}$}}}}}}% }% \end{picture} \onslide+{6-}{% \begin{picture}(220,111)(-72,-22) %\put(-72,-22){\framebox(220,111){}} % Horizontal Axis \thicklines \onslide*{5-}% {\put(-70,0){\vector(1,0){184}}} % Horizontal axis has 1/lambda for these \onslide*{5-11}% {\put(115,0){\makebox(0,0)[l]{$\tau_1+\frac{1}{\lambda}$}}} % Horizontal axis has no 1/lambda for these \onslide*{12-}% {\put(115,0){\makebox(0,0)[l]{$\tau_1\phantom{{}+\frac{1}{\lambda}}$}}} %{\put(115,0){\makebox(0,0)[l]{$\tau_1$}}} % Vertical Axis \thicklines % Vertical axis starts on the left \onslide*{5-11}% {\put(-24,-16){\vector(0,1){90}} \put(-24,75){\makebox(0,0)[b]{$g_1(\tau_1)$}}} % Vertical axis shifts to the right \onslide*{12-}% {\put(0,-16){\vector(0,1){90}} \put(0,75){\makebox(0,0)[b]{$g_1(\tau_1)$}}} % Everything else - thinlines \thinlines %% These slides occur before shift in y axis %% (i.e., shows location of 1/lambda) \onslide*{6-11} {\put(0,-3){\line(0,1){6}} \put(0,-6){\makebox(0, 0)[t]{$\frac{1}{\lambda}$}}} %% This slide shows tau-vs-g curve \onslide*{6-}% {\qbezier(0,0)(0,5)(5,10) \qbezier(5,10)(14,19)(20,22) \qbezier(20,22)(36,30)(51,35) \qbezier(51,35)(66,40)(78,40) \qbezier(78,40)(81.752,40)(86.2,38) \qbezier(86.2,38)(108.44,28)(114,10)} %% This slide shows the direction of increasing tau \onslide*{7}% {\put(0,0){\rnode{oftcurvestart}{\makebox(0,0){}}}% \put(5,10){\rnode{oftcurvealong}{\makebox(0,0){}}}% \nccurve[linecolor=blue,linewidth=\unitlength,angleA=90,angleB=225]{->}{oftcurvestart}{oftcurvealong}} %% These slides show a generic rate (as slope and line) at generic taus \onslide*{8,9}% {\put(-24,0){\line(29,10){138}} % Line \put(34,20){\line(1,0){47.125}} % Slope \put(81.125,20){\line(0,1){16.25}} \put(79.125,22){\makebox(0,0)[rb]{$\oft{\gamma}$}}} %% This slide shows generic rate at small tau \onslide*{8}% {\put(-27,10){\line(1,0){6}}% \put(5,-3){\line(0,1){6}}% \linethickness{3\unitlength}% \put(-24,0){\rnode{oftgline}{\color{darkgreen}\line(0,1){10}}}% \put(-40,-10){\rnode{oftgnote}{\makebox(0,0)[r]{\color{darkgreen}$g_1({\color{red}\tau_1})$}}}% \nccurve[linecolor=darkgreen,angleA=35,angleB=195]{<-}{oftgnote}{oftgline}% \put(0,0){\rnode{ofttline}{\color{red}\line(1,0){5}}}% \put(60,-10){\rnode{ofttnote}{\makebox(0,0)[l]{\color{red}$\accentset{ }{\tau}_1$}}}% \nccurve[linecolor=red,angleA=190,angleB=-90]{<-}{ofttnote}{ofttline}% \thinlines% \put(5,10){\circle*{3}}} %% This slide shows same generic rate at large tau \onslide*{9}% {\put(-27,38){\line(1,0){6}}% \put(86.2,-3){\line(0,1){6}}% \linethickness{3\unitlength}% \put(-24,0){\rnode{oftgline}{\color{darkgreen}\line(0,1){38}}}% \put(-40,-10){\rnode{oftgnote}{\makebox(0,0)[r]{\color{darkgreen}$g_1({\color{red}\tau_1})$}}}% \nccurve[linecolor=darkgreen,angleA=35,angleB=195]{<-}{oftgnote}{oftgline}% \put(0,0){\rnode{ofttline}{\color{red}\line(1,0){86.2}}}% \put(60,-10){\rnode{ofttnote}{\makebox(0,0)[l]{\color{red}$\accentset{ }{\tau}_1$}}}% \nccurve[linecolor=red,angleA=190,angleB=-90]{<-}{ofttnote}{ofttline}% \thinlines% \put(86.2,38){\circle*{3}}} %% These slides shows g and tau at optimum point \onslide*{10,11}% {\put(-27,22){\line(1,0){6}} \linethickness{3\unitlength}% \put(-24,0){\rnode{oftghatline}{\color{darkgreen}\line(0,1){22}}}% \put(-40,-10){\rnode{oftghatnote}{\makebox(0,0)[r]{\color{darkgreen}$g_1({\color{red}\hat{\tau}_1})$}}}% \nccurve[linecolor=darkgreen,angleA=35,angleB=195]{<-}{oftghatnote}{oftghatline}% \put(0,0){\rnode{oftthatline}{\color{red}\line(1,0){20}}}% \put(60,-10){\rnode{oftthatnote}{\makebox(0,0)[l]{\color{red}$\hat{\tau}_1$}}}% \nccurve[linecolor=red,angleA=190,angleB=-90]{<-}{oftthatnote}{oftthatline}% \thinlines} %% Marks position of maximum tau \onslide*{10-13,17,19-}% {\put(20,-3){\rnode{ofttau}{\line(0,1){6}}}} %% Shows slope that is optimal rate \onslide*{10-13,15}% {\put(-24, 0){\line(2,1){138}} % Optimal Line \put(74,67){\line(1,0){36}} % Optimal Slope \put(74,49){\line(0,1){18}}} %% Shows optimal rate as slope label %% Also shows optimal point \onslide*{10-12,15}% {\put(20,22){\circle*{3}} % Optimal point \put(76,65.5){\makebox(0,0)[lt]{$\oft{\gamma}^*$}}} % Optimal slope label %% Shows the location of maximum of g \onslide*{11}% {\put(-27,40){\line(1,0){6}} \put(-29,40){\makebox(0,0)[r]{$g_1^*$}} \put(-24,40){\dashbox{3}(102,0){}}} %% These slides occur just after shift in y axis \onslide*{12}% {\put(-5,22){\makebox(0,0)[r]{$g_1(\hat{\tau}_1)$}} \put(20,-6){\makebox(0,0)[t]{$\hat{\tau}_1$}}} %% Labels -1/lambda \onslide*{12,13} {\put(-24,-6){\makebox(0, 0)[t]{$\frac{-1}{\lambda}$}}} %% Marks position of optimal gain at lambda %% (lambda is also marked) \onslide*{12-13,17,19-}% {\put(-3,22){\rnode{oftg}{\line(1,0){6}}} \put(-24,-3){\rnode{oftlambda}{\line(0,1){6}}}} \onslide*{15,16}% {\put(-24,-3){\rnode{oftlambda}{\line(0,1){6}}}} %% MVT illustration slide \onslide*{13}% {\put(76,65.5){\makebox(0,0)[lt]{\color{blue}$\oft{\gamma}^*$}}% \put(-5,22){\makebox(0,0)[r]{$g_1({\color{red}\hat{\tau}_1})$}}% \put(20,-6){\makebox(0,0)[t]{\color{red}$\hat{\tau}_1$}}% \put(20,22){\color{purple}\circle*{3}}% \put(-70,60){\makebox(70,0)[t]{\shortstack{{\color{purple}\ac{MVT}}\\% ${\color{blue}g_1'(}{\color{red}\hat{\tau}_1}{\color{blue})}={\color{blue}\oft{\gamma}^*}$}}}} %% Motivate question of how picture changes with %% increasing lambda \onslide*{14} {\put(-70,52){\makebox(70,0)[t]{$\phantom{\lambda^- < {}} \lambda < \lambda^+$}}% \put(0,4.5){\makebox(114,0)[b]{$\operatorname*{\gtreqless}\limits^\text{\ac{MVT}?}$}}} %% Shows shift in optimization from increasing lambda \onslide*{15-17} {% Label for this slide \put(-70,52){\makebox(70,0)[t]{$\phantom{\lambda^- < {}} \lambda < {\color{purple}\lambda^+}$}}% % Shifted lambda (old lambda at (-24,0)) \put(-5,-3){\rnode{oftlambdaplus}{\line(0,1){6}}} \put(-14.5,-6){\rnode{oftlambdaplusbox}{\makebox(0,0){}}} \nccurve[linecolor=purple,angleA=-45,angleB=180]{-}{oftlambda}{oftlambdaplusbox}% \nccurve[linecolor=purple,angleA=0,angleB=-135]{->}{oftlambdaplusbox}{oftlambdaplus}% \put(-14.5,-7){\makebox(0,0)[t]{\scalebox{0.75}{$\frac{-1}{\color{purple}\lambda^+}$}}} \onslide*{16,17} {% New optimal slope/rate \put(-5,0){\line(1,1){69}} % New rate line % Position of new optimal point \put(5,10){\circle*{3}}} \onslide*{16} {% Optimal slope and optimal rate \put(32,37){\line(0,1){30}} % Optimal slope \put(32,67){\line(1,0){30}} \put(34,65){\makebox(0,0)[lt]{$\oft{\gamma}^*_+$}}} % Optimal rate label \onslide*{17} {% Shifted tau (old tau at (20,0)) \put(5,-3){\rnode{ofttauplus}{\line(0,1){6}}} \put(12.5,-6){\rnode{ofttauplusbox}{\makebox(0,0){}}} \nccurve[linecolor=red,angleA=-135,angleB=0]{-}{ofttau}{ofttauplusbox}% \nccurve[linecolor=red,angleA=180,angleB=-45]{->}{ofttauplusbox}{ofttauplus}% \put(12.5,-7){\makebox(0,0)[t]{\scalebox{0.75}{$\hat{\tau}^+_1$}}} % Shifted g (old g at (0,22)) \put(-3,10){\rnode{oftgplus}{\line(1,0){6}}} \put(-6,16){\rnode{oftgplusbox}{\makebox(0,0){}}} \nccurve[linecolor=green,angleA=-145,angleB=90]{-}{oftg}{oftgplusbox}% \nccurve[linecolor=green,angleA=-90,angleB=145]{->}{oftgplusbox}{oftgplus}% \put(-7,16){\makebox(0,0)[r]{\scalebox{0.75}{$g_1(\hat{\tau}^+_1)$}}} % Optimal slope and optimal rate \put(32,37){\line(0,1){30}} % Optimal slope \put(32,67){\line(1,0){30}} \put(34,65){\makebox(0,0)[lt]{\color{blue}$\oft{\gamma}^*_+$}} % Optimal rate label % Label change in rate \put(0,8){\makebox(114,0)[b]{$\phantom{\oft{\gamma}^*_- < {}} \oft{\gamma} < {\color{blue}\oft{\gamma}^*_+}$}}}} %% Motivate question of how picture changes with %% decreasing lambda \onslide*{18} {\put(-70,52){\makebox(70,0)[t]{$\lambda^- < \lambda \phantom{{} < \lambda^+}$}}% \put(0,4.5){\makebox(114,0)[b]{$\operatorname*{\gtreqless}\limits^\text{\ac{MVT}?}$}}} %% Shows shift in optimization from increasing lambda \onslide*{19} {% Shifted lambda (old lambda at (-24,0)) \put(-54,-3){\rnode{oftlambdaminus}{\line(0,1){6}}} \put(-39,-6){\rnode{oftlambdaminusbox}{\makebox(0,0){}}} \nccurve[linecolor=purple,angleA=-135,angleB=0]{-}{oftlambda}{oftlambdaminusbox}% \nccurve[linecolor=purple,angleA=180,angleB=-45]{->}{oftlambdaminusbox}{oftlambdaminus}% \put(-39,-7){\makebox(0,0)[t]{\scalebox{0.75}{$\frac{-1}{\color{purple}\lambda^-}$}}} % Shifted tau (old tau at (20,0)) \put(51,-3){\rnode{ofttauminus}{\line(0,1){6}}} \put(35.5,-6){\rnode{ofttauminusbox}{\makebox(0,0){}}} \nccurve[linecolor=red,angleA=-45,angleB=180]{-}{ofttau}{ofttauminusbox}% \nccurve[linecolor=red,angleA=0,angleB=-135]{->}{ofttauminusbox}{ofttauminus}% \put(35.5,-7){\makebox(0,0)[t]{\scalebox{0.75}{$\hat{\tau}^-_1$}}} % Shifted g (old g at (0,22)) \put(-3,35){\rnode{oftgminus}{\line(1,0){6}}} \put(-6,28.5){\rnode{oftgminusbox}{\makebox(0,0){}}} \nccurve[linecolor=green,angleA=145,angleB=-90]{-}{oftg}{oftgminusbox}% \nccurve[linecolor=green,angleA=90,angleB=-145]{->}{oftgminusbox}{oftgminus}% \put(-7,28.5){\makebox(0,0)[r]{\scalebox{0.75}{$g_1(\hat{\tau}^-_1)$}}} % Position of new optimal point \put(51,35){\circle*{3}} % New optimal slope/rate \put(-54,0){\line(3,1){168}} % New rate line \put(57,37){\line(0,1){18}} % Optimal slope \put(57,55){\line(1,0){54}} \put(59,53){\makebox(0,0)[lt]{\color{blue}$\oft{\gamma}^*_-$}} % Optimal slope label % Label for this slide \put(-70,52){\makebox(70,0)[t]{${\color{purple}\lambda^-} < \lambda \phantom{{} < \lambda^+}$}}% \put(0,8){\makebox(114,0)[b]{${\color{blue}\oft{\gamma}^*_-} < \oft{\gamma} \phantom{{} < \oft{\gamma}^*_+}$}}} \end{picture}} \caption{Visualization of Classical OFT Rate Maximization} \label{fig:oft_rate_maximization} \end{figure} \vspace{\stretch{1}} \end{wideslide} \begin{wideslide}[toc=\ac{OFT} \& Pareto]{Efficient \ac{OFT} Rate Maximization} \vspace{\stretch{1}} \onslide*{2-}{\begin{equation*} \overline{\tau} \triangleq \onslide*{2,3} {\sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i \tau_i} \onslide*{4} {\sum\limits_{i=1}^n \rnode{lambdailambda1}{\color{red}\frac{\lambda_i}{\lambda}} p_i \tau_i} \onslide*{5} {\sum\limits_{i=1}^n \rnode{lambdailambda4}{\color{darkgreen}\Lambda_i} p_i \tau_i} \onslide*{6-} {\sum\limits_{i=1}^n \Lambda_i p_i \tau_i} \qquad \overline{g} \triangleq \onslide*{2,3} {\sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i g_i(\tau_i)} \onslide*{4} {\sum\limits_{i=1}^n \rnode{lambdailambda2}{\color{red}\frac{\lambda_i}{\lambda}} p_i g_i(\tau_i)} \onslide*{5} {\sum\limits_{i=1}^n \rnode{lambdailambda5}{\color{darkgreen}\Lambda_i} p_i g_i(\tau_i)} \onslide*{6-} {\sum\limits_{i=1}^n \Lambda_i p_i g_i(\tau_i)} \qquad \overline{c} \triangleq \onslide*{2,3} {\sum\limits_{i=1}^n \frac{\lambda_i}{\lambda} p_i c_i \tau_i} \onslide*{4} {\sum\limits_{i=1}^n \rnode{lambdailambda3}{\color{red}\frac{\lambda_i}{\lambda}} p_i c_i \tau_i} \onslide*{5} {\sum\limits_{i=1}^n \rnode{lambdailambda6}{\color{darkgreen}\Lambda_i} p_i c_i \tau_i} \onslide*{6-} {\sum\limits_{i=1}^n \Lambda_i p_i c_i \tau_i} \onslide*{4}{\ncbar[linecolor=red,angle=90]{lambdailambda1}{lambdailambda2}\ncbar[linecolor=red,angle=90]{lambdailambda2}{lambdailambda3}} \onslide*{5}{\ncbar[linecolor=darkgreen,angle=90,armA=.5cm,armB=.5cm]{<->}{lambdailambda4}{lambdailambda5}\ncbar[linecolor=darkgreen,angle=90,armA=.5cm,armB=.5cm]{->}{lambdailambda5}{lambdailambda6}} \end{equation*} \vspace{\stretch{1}}} \begin{figure}[!ht]\centering \begin{picture}(100,109)(0,0) \put(50, 54.5){% \makebox(0,0){\scalebox{0.9}{\framebox(103,95){% \shortstack[c]% {% \onslide{3-}% {$\E(\oft{G}_1) = \overline{g}-\overline{c}-\frac{c^s}{\lambda}$}\\% \onslide{3-}% {$\E(\oft{T}_1) = \overline{\tau} + \frac{1}{\lambda}$}\\% \onslide*{1,2}% {$\oft{\gamma} \triangleq \frac{\E(\oft{G}_1)}% {\E(\oft{T}_1)}$\\}% \onslide*{3-}% {$\oft{\gamma} \triangleq \frac{\overline{g}-\overline{c}-\frac{c^s}{\lambda}}% {\overline{\tau} + \frac{1}{\lambda}}$\\}% \onslide{14-}% {$\lozenge^* \triangleq \max\left\{\lozenge\right\}$}}}}}}% \end{picture} \onslide+{7-}{% \begin{picture}(220,121)(-72,-22) %\put(-72,-22){\framebox(220,111){}} % Horizontal Axis \thicklines \onslide*{6-12}% {\put(-70,10){\vector(1,0){184}}} \onslide*{13-}% {\put(-70,0){\vector(1,0){184}}} % Horizontal axis has 1/lambda for these \onslide*{6-12}% {\put(115,10){\makebox(0,0)[l]{$\overline{\tau}+\frac{1}{\lambda}$}}} % Horizontal axis has no 1/lambda for these \onslide*{13-}% {\put(115,0){\makebox(0,0)[l]{$\overline{\tau}\phantom{{}+\frac{1}{\lambda}}$}}} %{\put(115,0){\makebox(0,0)[l]{$\tau_1$}}} % Vertical Axis \thicklines % Vertical axis starts on the left \onslide*{6-12}% {\put(-10,-16){\vector(0,1){100}} \put(-10,85){\makebox(0,0)[b]{$\overline{g}-\overline{c}-\frac{c^s}{\lambda}$}}} % Vertical axis shifts to the right \onslide*{13-}% {\put(0,-16){\vector(0,1){100}} \put(0,85){\makebox(0,0)[b]{$\overline{g}-\overline{c}$}}} % Everything else - thinlines \thinlines \onslide*{7-11} { \onslide*{7-} {\put(15,30){\circle*{2}}} \onslide*{8-} {\put(20,40){\circle*{2}}} \onslide*{9-} {\put(70,20){\circle*{2}}} \onslide*{10-} {\put(1,1){\circle*{2}} % These random points were generated by td_rand_points script \put(45.37,25.28){\circle*{2}} \put(67.19,33.12){\circle*{2}} \put(40.01,63.57){\circle*{2}} \put(45.25,55.88){\circle*{2}} \put(38.66,34.96){\circle*{2}} \put(24.51,7.41){\circle*{2}} \put(27.12,2.57){\circle*{2}} \put(90.12,43.12){\circle*{2}} \put(106.79,19.8){\circle*{2}} \put(54.19,35.79){\circle*{2}} \put(78.64,14.67){\circle*{2}} \put(19.04,31.43){\circle*{2}} \put(53.93,31.08){\circle*{2}} \put(31.06,0.11){\circle*{2}} \put(19.06,24.41){\circle*{2}} \put(90.99,31.17){\circle*{2}} \put(57.19,57.8){\circle*{2}} \put(59.67,53.16){\circle*{2}} \put(85.93,2.27){\circle*{2}} \put(54.78,39.39){\circle*{2}} \put(17.95,30.97){\circle*{2}} \put(74.99,51.76){\circle*{2}} \put(46.81,5.52){\circle*{2}} \put(106.17,40.92){\circle*{2}} \put(65.45,51.56){\circle*{2}} \put(39.23,40.88){\circle*{2}} \put(87.62,3.08){\circle*{2}} \put(55.66,31.2){\circle*{2}} \put(63.27,49.11){\circle*{2}} \put(42.09,2.08){\circle*{2}} \put(62.83,1.08){\circle*{2}} \put(50.94,43.61){\circle*{2}} \put(69.66,16.6){\circle*{2}} \put(16.27,15.9){\circle*{2}} \put(27.48,47.39){\circle*{2}} \put(43.74,1.64){\circle*{2}} \put(65.16,43.86){\circle*{2}} \put(86.81,12.47){\circle*{2}} \put(51.06,63.2){\circle*{2}} \put(87.62,3.03){\circle*{2}} \put(62.47,39.56){\circle*{2}} \put(34.62,22.32){\circle*{2}} \put(65.62,48.52){\circle*{2}} \put(22.24,27.75){\circle*{2}} \put(64.45,40.21){\circle*{2}} \put(32.22,48.99){\circle*{2}} \put(108.71,4.21){\circle*{2}} \put(19.48,14.32){\circle*{2}} \put(74.54,22.41){\circle*{2}} \put(95.73,15.38){\circle*{2}} \put(34.27,15.06){\circle*{2}} \put(78.5,52.19){\circle*{2}} \put(53.65,59.92){\circle*{2}} \put(65.59,29.39){\circle*{2}} \put(90.13,10.81){\circle*{2}} \put(86.09,8.81){\circle*{2}} \put(58.28,17.6){\circle*{2}} \put(24.79,46.32){\circle*{2}} \put(34,29.09){\circle*{2}} \put(35.04,12.77){\circle*{2}} \put(40.76,47.05){\circle*{2}} \put(32.54,46.97){\circle*{2}} \put(63.29,52.04){\circle*{2}} \put(106.85,1.06){\circle*{2}} \put(33.13,38.04){\circle*{2}} \put(106.19,23.2){\circle*{2}} \put(48.76,28.61){\circle*{2}} \put(48.28,49.47){\circle*{2}} \put(59.39,52.96){\circle*{2}} \put(17.69,9.38){\circle*{2}} \put(80.1,47.89){\circle*{2}} \put(23.56,4.53){\circle*{2}} \put(99.62,9.77){\circle*{2}} \put(18.51,2.49){\circle*{2}} \put(15.63,30.59){\circle*{2}} \put(22.91,1.4){\circle*{2}} \put(21.44,11.72){\circle*{2}} \put(28.98,41.39){\circle*{2}} \put(28.51,55.93){\circle*{2}} \put(12.61,7.82){\circle*{2}} \put(21.03,25.23){\circle*{2}} \put(21.4,17.63){\circle*{2}} \put(4.73,2.31){\circle*{2}} \put(10.53,6.42){\circle*{2}} \put(27.65,38.76){\circle*{2}} \put(24.78,40.38){\circle*{2}} \put(27.17,35.78){\circle*{2}} \put(24.7,47.96){\circle*{2}} \put(20.76,12.37){\circle*{2}} \put(24.3,34.87){\circle*{2}} \put(25.74,48.72){\circle*{2}} \put(13.78,11.85){\circle*{2}} \put(27.19,24.6){\circle*{2}} \put(8.16,11.89){\circle*{2}} \put(27.87,39.16){\circle*{2}} \put(27.36,10.8){\circle*{2}} \put(28.6,54.28){\circle*{2}} \put(23.76,42.99){\circle*{2}} \put(29.27,35.97){\circle*{2}} \put(27.19,39.85){\circle*{2}} \put(16.72,16.17){\circle*{2}} \put(26.31,28.66){\circle*{2}} \put(23.92,43.05){\circle*{2}} \put(68.24,35.42){\circle*{2}} \put(69.21,57.04){\circle*{2}} \put(32.31,33.94){\circle*{2}} \put(56.69,7.9){\circle*{2}} \put(100.86,43.26){\circle*{2}} \put(101.75,18.75){\circle*{2}} \put(46.84,15.53){\circle*{2}} \put(71.9,41.79){\circle*{2}} \put(82.57,45.4){\circle*{2}} \put(38.23,28.39){\circle*{2}} \put(86.65,9.51){\circle*{2}} \put(58.96,13.08){\circle*{2}} \put(67.95,52.07){\circle*{2}} \put(87.69,27.51){\circle*{2}} \put(93.93,4.37){\circle*{2}} \put(51.56,44.08){\circle*{2}} \put(83.05,39.67){\circle*{2}} \put(59.37,31.85){\circle*{2}} \put(42.86,42.18){\circle*{2}} \put(35.04,7.81){\circle*{2}} \put(41.04,52.42){\circle*{2}} \put(62.7,13.4){\circle*{2}} \put(54.86,8.83){\circle*{2}} \put(38.94,50.67){\circle*{2}} \put(33.34,46.23){\circle*{2}} \put(51.98,14.64){\circle*{2}} \put(58.03,4.75){\circle*{2}} \put(52.87,17.94){\circle*{2}} \put(49.49,21.93){\circle*{2}} \put(111.51,16.44){\circle*{2}} \put(43.84,39.79){\circle*{2}} \put(37.85,36.26){\circle*{2}} \put(82.95,52.81){\circle*{2}} \put(45.37,9.18){\circle*{2}} \put(48.44,28.82){\circle*{2}} \put(37.45,60.79){\circle*{2}} \put(71.29,21.6){\circle*{2}} \put(86.14,30.35){\circle*{2}} \put(46.45,17.11){\circle*{2}} \put(111.32,16.8){\circle*{2}} \put(71.11,56.42){\circle*{2}} \put(67.48,53.19){\circle*{2}} \put(32.4,41.25){\circle*{2}} \put(70.81,27.1){\circle*{2}} \put(66.51,32.31){\circle*{2}} \put(75.89,39.91){\circle*{2}} \put(40.44,62.73){\circle*{2}} \put(99.53,43.03){\circle*{2}} \put(37.86,55.92){\circle*{2}} \put(44.86,3.95){\circle*{2}} \put(41.72,7.35){\circle*{2}} \put(53.09,15.18){\circle*{2}} \put(114,5){\circle*{2}}}} %% These slides occur before shift in y axis %% (i.e., shows location of 1/lambda) \onslide*{11-12} {\put(0,7){\line(0,1){6}} \put(1,14){\makebox(0,0)[rb]{$\frac{1}{\lambda}$}} \put(-13,0){\line(1,0){6}} \put(-14,0){\makebox(0,0)[r]{$\frac{-c^s}{\lambda}$}} } %% This slide shows tau-vs-g curve \onslide*{11-}% {\qbezier(0,0)(0,22.5)(30,60) \qbezier(30,60)(38,70)(50,70) \qbezier(50,70)(70,70)(114,38)} %% Labels -1/lambda and c^s/lambda \onslide*{14} {\put(-10,-3){\line(0,1){6}} \put(-10,-6){\makebox(0, 0)[t]{$\frac{-1}{\lambda}$}} \put(-3,10){\line(1,0){6}} \put(6,10){\makebox(0, 0)[l]{$\frac{c^s}{\lambda}$}} %% Shows slope that is optimal rate \put(0,0){\rnode{oftcssource}{\makebox(0,0){}}} \put(-60,60){\rnode{oftcstarget}{\makebox(0,0){}}} \ncline[linestyle=dotted]{->}{oftcssource}{oftcstarget} \put(-32,32){\line(0,-1){17}} % c^s Dotted Line Slope \put(-32,15){\line(1,0){17}} \put(-31,16){\makebox(0,0)[lb]{\scalebox{0.5}{$-c^s$}}} \put(-10,10){\circle*{2}} \put(-10,10){\line(8,10){51.2}} % Optimal Line \put(6,30){\line(0,1){25}} % Optimal Slope \put(6,55){\line(1,0){20}} %% Shows optimal rate as slope label %% Also shows optimal point \put(30,60){\circle*{3}} % Optimal point \put(8,53){\makebox(0,0)[lt]{$\oft{\gamma}^*$}}} % Optimal slope label %% Labels -1/lambda and c^s/lambda \onslide*{15,16} {\put(-10,-3){\line(0,1){6}} \put(-10,-6){\makebox(0, 0)[t]{$\frac{-1}{\lambda}$}} \put(-3,70){\line(1,0){6}} \put(6,69){\makebox(0, 0)[lt]{$\frac{c^s}{\lambda}$}} %% Shows slope that is optimal rate \put(0,0){\rnode{oftcssourcenew}{\makebox(0,0){}}} \put(-12,84){\rnode{oftcstargetnew}{\makebox(0,0){}}} \ncline[linestyle=dotted]{->}{oftcssourcenew}{oftcstargetnew} \onslide*{15} {\put(0,0){\rnode{oftcssourceold}{\makebox(0,0){}}} \put(-60,60){\rnode{oftcstargetold}{\makebox(0,0){}}} \ncline[linestyle=dotted]{->}{oftcssourceold}{oftcstargetold} \nccurve[linecolor=blue,angleA=45,angleB=187]{->}{oftcstargetold}{oftcstargetnew} \put(-9,11){\makebox(0,0)[lb]{\scalebox{0.35}{\color{blue}$-c^s$}}}} \put(-9.5,66.5){\line(0,-1){56}} % c^s Dotted Line Slope \put(-9.5,10.5){\line(1,0){8}} \onslide*{16} {\put(-9,11){\makebox(0,0)[lb]{\scalebox{0.35}{$-c^s$}}} \put(-10,70){\circle*{2}} \put(-10,70){\line(1,0){124}} % Optimal Line %% Shows optimal rate as slope label %% Also shows optimal point \put(50,70){\circle*{3}} % Optimal point \put(50,73){\makebox(0,0)[b]{$\oft{\gamma}^* = 0$}}}} % Optimal slope label \end{picture}} \caption{Visualization of Generalized OFT Rate Maximization} \label{fig:efficient_rate_maximization} \end{figure} \vspace{\stretch{1}} \end{wideslide} \begin{slide}[toc=Finite Approach]{Finite-Lifetime Approach} \begin{itemize} \item<2-> Lifetime ends after $N^p$ {\onslide*{2}{\color{red}}processed} tasks \item<3-> Lifetime success threshold of $G^T$ points \item<4-> Average cycle success threshold of $\frac{G^T}{N^p}$ points \item<5-> Blends rate maximization and risk sensitivity \end{itemize} \end{slide} \begin{wideslide}[toc=Finite Rate]{Finite-Lifetime Rate Maximization} \vspace{\stretch{1}} \begin{figure}[!ht]\centering \begin{picture}(155,155)(0,0) \put(77.5,77.5){\makebox(0,0){\scalebox{0.8}{\framebox(155,85){ \shortstack[c]% {$\mu \triangleq \E(G_1) = % \overline{g^p} - \overline{c^p} - \frac{c^s}{\lambda^p}% $\\% $\E(T_1) = \overline{\tau^p} + \frac{1}{\lambda^p}$\\% $\gamma \triangleq \frac{\mu - % \frac{G^T}{N^p}}{\overline{\tau^p}% + \frac{1}{\lambda^p}}$\\% $\lozenge^* \triangleq \max\left\{\lozenge\right\}$}}}}} \end{picture} \begin{picture}(182,155)(-54,-20) % Horizontal Axis \thicklines \put(-30, 0){\vector(1, 0){144}} \put(115, 0){\makebox(0, 0)[l]{$\overline{\tau^p}$}} % Vertical Axis \thicklines \put(0, -16){\vector(0, 1){136}} \put(0, 121){\makebox(0, 0)[b]% {$\overline{g^p}-\overline{c^p}$}} % Rate Line \thinlines \put(-12, 92){\line(2,-1){132}} \put(84, 44){\circle*{5}} % Maximal Rate (Slope) \thinlines \put(20,76){\line(1,0){34}} \put(54,76){\line(0,-1){17}} \put(53,75){\makebox(0, 0)[rt]{$\gamma^*$}} % Threshold Value \thicklines \put(-4, 80){\line(1,0){8}} \put(-5, 80){\makebox(0, 0)[rt]% {\scalebox{0.8}{$\frac{G^T}{N^p}$}}} \put(-4, 92){\line(1,0){8}} \put(5, 90){\makebox(0, 0)[lb]% {$\frac{G^T}{N^p}+\frac{c^s}{\lambda^p}$}} \put(0, 80){\circle*{2}} \put(-2, 82){\circle*{1}} \put(-4, 84){\circle*{1}} \put(-6, 86){\circle*{1}} \put(-8, 88){\circle*{1}} \put(-10, 90){\circle*{1}} \put(-12, 92){\circle*{3}} \put(-14, 94){\circle*{1}} \put(-16, 96){\circle*{1}} \put(-18, 98){\circle*{1}} \put(-20, 100){\circle*{1}} \put(-22, 102){\circle*{1}} \put(-24, 104){\circle*{1}} \put(-26, 106){\circle*{1}} \put(-28, 108){\circle*{1}} \put(-30, 110){\circle*{1}} \put(-32, 112){\circle*{1}} \put(-34, 114){\circle*{1}} \put(-36, 116){\circle*{1}} \put(-38, 118){\vector(-1,1){1}} \put(-28,108){\line(0,-1){6}} \put(-28,102){\line(1,0){6}} \put(-29,105){\makebox(0, 0)[r] {\scalebox{0.8}{$-c^s$}}} % Curve, starting origin and moving CW \thinlines \qbezier(0,0)(10,55)(40,55) \qbezier(40,55)(58.5,55)(84,44) %\qbezier(84,44)(92,41)(114,21) \qbezier(84,44)(92,41)(100,21) % Max and mins \thicklines \put(-4,55){\line(1,0){8}} \put(100,-4){\line(0,1){8}} \thinlines \put(-5,54){\makebox(0, 0)[r]% {$\left(\overline{g^p}-\overline{c^p}\right)^*$}} \put(0,55){\dashbox{3}(40,0){}} \put(100,-5){\makebox(0, 0)[t]% {$\left(\overline{\tau^p}\right)^*$}} \put(100,0){\dashbox{3}(0,21){}} % Origin strategy \thicklines \put(-12,-4){\line(0,1){8}} %\put(-4,12){\line(1,0){8}} \thinlines \put(-12,-5){\makebox(0, 0)[t]% {$\frac{-1}{\lambda^p}$}} %\put(-5,12){\makebox(0, 0)[r]% %{$-\frac{c^s}{\lambda^p}$}} \end{picture} \caption{Excess Rate Maximization ($N^p$ cycles and $G^T$ threshold)} \label{fig:rate_maximization_cycle_visualization} \end{figure} \vspace{\stretch{1}} \end{wideslide} \begin{wideslide}[toc=Finite R-to-V]{Reward-to-Variability Maximization} \vspace{\stretch{1}} \begin{figure}[!ht]\centering \begin{picture}(150,42)(0,0) \put(75,21){\makebox(0,0){\scalebox{0.75}{\framebox(363,55){ \shortstack[c]% {$\mu \triangleq \E(G_1) = % \overline{g^p} - \overline{c^p} - \frac{c^s}{\lambda^p}% $ \qquad % $\sigma \triangleq \std(G_1) = \sqrt{% \var\left(g^p - c^p\right) % + \left(\frac{c^s}{\lambda^p}\right)^2% }$\\% $\rho \triangleq \frac{\mu - % \frac{G^T}{N^p}}{\sigma}$ \qquad \qquad% $\lozenge^* \triangleq \max\left\{\lozenge\right\}$}}}}} \end{picture}\\ \vspace{\stretch{4}} \begin{picture}(236,149)(-52,-22) \thicklines % Horizontal Axis \put(-10, 0){\vector(1, 0){155}} \put(147, 0){\makebox(0, 0)[l]% {$\sigma-\frac{|c^s|}{\lambda^p}$}} % Vertical Axis \put(24, -15){\vector(0, 1){125}} \put(24, 111){\makebox(0, 0)[b]% %{$\mu + \frac{c^s}{\lambda}$}} {$\overline{g^p} - \overline{c^p}$}} % Reward-to-Variability Line \thinlines \put(12, 85.2){\line(5,-2){133}} \put(110, 46){\circle*{5}} % Maximal Reward-to-Variability (Slope) \thinlines \put(31,77.6){\line(1,0){45}} \put(76,77.6){\line(0,-1){18}} \put(75,76.6){\makebox(0, 0)[rt]{$\rho^*$}} % Threshold Value %\thinlines %\put(0,85.2){\dashbox{3}(12,0){}} \thicklines \put(20,73.2){\line(1,0){8}} \put(12,-4){\line(0,1){8}} \thinlines %\put(-3,95.2){\makebox(0,0)[r]{$-\frac{c^s}{|c^s|}$}} \put(-3,95.2){\makebox(0,0)[r]{$-\sgn(c^s)$}} \put(-2,99.2){\line(0,-1){8}} \put(-2,91.2){\line(1,0){8}} \put(24,73.2){\circle*{1}} \put(22,75.2){\circle*{1}} \put(20,77.2){\circle*{1}} \put(18,79.2){\circle*{1}} \put(16,81.2){\circle*{1}} \put(14,83.2){\circle*{1}} \put(12,85.2){\circle*{3}} \put(10,87.2){\circle*{1}} \put(8,89.2){\circle*{1}} \put(6,91.2){\circle*{1}} \put(4,93.2){\circle*{1}} \put(2,95.2){\circle*{1}} \put(0,97.2){\circle*{1}} \put(-2,99.2){\circle*{1}} \put(-4,101.2){\circle*{1}} \put(-6,103.2){\circle*{1}} \put(-8,105.2){\circle*{1}} \put(-10,107.2){\circle*{1}} \put(-12,109.2){\vector(-1, 1){1}} \put(17,73.2){\makebox(0,0)[r]{$\frac{G^T}{N^p}$}} \put(12,-5){\makebox(0,0)[t]% {$-\frac{|c^s|}{\lambda^p}$}} % Curve, starting from upper left and moving CW \thinlines \qbezier(35,30)(35,55)(51,55) \qbezier(51,55)(80,55)(110,46) \qbezier(110,46)(120,40)(120,33) \qbezier(120,33)(120,10)(24,0) % Max and mins \thicklines \put(120,-4){\line(0,1){8}} \put(20,55){\line(1,0){8}} \thinlines \put(120,-5){\makebox(0, 0)[t]% {$\sigma^*-\frac{|c^s|}{\lambda^p}$}} \put(120,0){\dashbox{3}(0,33){}} \put(129,33){\circle*{1}} \put(126,33){\circle*{1}} \put(123,33){\circle*{1}} \put(120,33){\circle*{1}} \put(117,33){\circle*{1}} \put(114,33){\circle*{1}} \put(111,33){\circle*{1}} \put(108,33){\circle*{1}} \put(105,33){\circle*{1}} \put(102,33){\vector(-1, 0){1}} \put(19,55){\makebox(0, 0)[r]% {$\left( \overline{g^p} - \overline{c^p} \right)^*$}} \put(24,55){\dashbox{3}(27,0){}} \end{picture} \caption{Sharpe Ratio Maximization ($N^p$ cycles and $G^T$ threshold)} \label{fig:risk_sensitivity_sharpe_cycle_visualization} \end{figure} \vspace{\stretch{1}} \end{wideslide} \begin{slide}[toc=Pareto Discounts]{Optimization by Discounting} % \onslide*{2,3,4,5,6,7,8,9}{\begin{itemize} \item<2-> Objectives \onslide*{2-5}{$A$}\onslide*{6-}{{\color{darkgreen}$A$}} and \onslide*{2-6}{$B$}\onslide*{7-}{{\color{red}$B$}} \item<3-> Discount \onslide*{2-8}{$\onslide*{2-7}{w}\onslide*{8-}{{\color{blue}w}} \in \R_{\geq0}$}\onslide*{9}{${\color{magenta}\oft{\gamma}^* \in \R}$} \item<4-> Maximization of $\onslide*{2-5}{A}\onslide*{6-}{{\color{darkgreen}A}} - \onslide*{2-7}{w}\onslide*{8}{{\color{blue}w}}\onslide*{9-}{{\color{magenta}\oft{\gamma}^*}} \onslide*{2-6}{B}\onslide*{7-}{{\color{red}B}}$ is Pareto optimal \item<9-> \onslide{9}{\rnode{oppcost}{\color{magenta}Opportunity cost}} \end{itemize}} % \showall % \onslide*{5,6,7,8,9}{\vspace{\stretch{1}} \begin{equation*} \boxed{% \onslide{6-}{{\color{darkgreen}\E\left(\oft{G}_1\right)}} \onslide{7-}{-} \onslide*{5,6,7}{\phantom{w}}\onslide*{8}{{\color{blue}w}}\onslide*{9}{\rnode{ocgamma}{\color{magenta}\oft{\gamma}^*}} \onslide{7-}{{\color{red}\E\left(\oft{T}_1\right)}}% } \end{equation*} \onslide*{9}{\nccurve[nodesep=1pt,linecolor=magenta,angleA=-90,angleB=90]{<-}{oppcost}{ocgamma}} \vspace{\stretch{1}}} % \onslide*{10}{\textbf{Other Possibilities} \vspace{\stretch{1}} \twocolumn% { \quad\\ \quad\\ \begin{gather*} \E\left(\oft{G}_1\right) - \oft{w}_0 \E\left(\oft{T}_1\right)\\ \qquad\\ \E\left(\oft{G}_1\right) - \oft{w}_1 \std\left(\oft{G}_1\right)\\ \qquad\\ \E\left(\oft{G}_1 + \oft{C}_1\right) - \oft{w}_2 \E\left(\oft{C}_1\right) \end{gather*} }{ \quad\\ \quad\\ \begin{gather*} \phantom{\Bigl(}\E\left(G_1\right) - w_0 \E\left(T_1\right)\phantom{\Bigr)}\\ \qquad\\ \phantom{\Bigl(}\E\left(G_1\right) - w_1 \std\left(G_1\right)\phantom{\Bigr)}\\ \qquad\\ \phantom{\Bigl(}\E\left(G_1+C_1\right) - w_2 \E\left(C_1\right)\phantom{\Bigr)} \end{gather*} }% \vspace{\stretch{1}}} % \end{slide} \section{Results} \begin{slide}[toc=A-to-D Functions]{Advantage-to-Disadvantage Ratio} % \onslide*{2,3,4}{\vspace{\stretch{2}} \begin{align*} \onslide{2-}{{\onslide*{4}{\color{darkgreen}}A} &\triangleq a + \sum\limits_{i=1}^n p_i a_i(\tau_i)} \\ \onslide{3-}{{\onslide*{4}{\color{red}}D} &\triangleq d + \sum\limits_{i=1}^n p_i d_i(\tau_i)} \end{align*} % \vspace{\stretch{3}} % \begin{equation*} \onslide{4-}{\ovalnode[linecolor=blue]{JAD}{ J \triangleq \frac{\color{darkgreen}A}{\color{red}D} }} \end{equation*} \vspace{\stretch{2}}} % \onslide*{5}{\textbf{Examples: Gain and Time Objectives} \vspace{\stretch{2}} % \begin{equation*} \frac{ \E(G_1) - \frac{G^T}{N^p} }{ \E(T_1) } = \frac% { {\color{darkgreen}-c^s} + \sum\limits_{i=1}^n p_i {\color{darkgreen}\lambda_i \left( g_i(\tau_i) - c_i \tau_i - \frac{G^T}{N^p} \right)} }% { {\color{red}1} + \sum\limits_{i=1}^n p_i {\color{red}\lambda_i \tau_i} }% \end{equation*} \vspace{\stretch{1}} \begin{equation*} \E(G_1) - w \E(T_1) = \frac% { {\color{darkgreen}-(c^s+w)} + \sum\limits_{i=1}^n p_i {\color{darkgreen}\lambda_i \left( g_i(\tau_i) - c_i \tau_i - w_i \tau_i \right)} }% { \sum\limits_{i=1}^n p_i {\color{red}\lambda_i} }% \end{equation*}\vspace{\stretch{2}}} % \onslide*{6}{\textbf{Examples: Efficiency-Type Objectives} \vspace{\stretch{2}} \begin{equation*} \frac{ \E(G_1) + \E(C_1) - \frac{G_g^T}{N^p} }{ \E(C_1) } = \frac% { \sum\limits_{i=1}^n p_i {\color{darkgreen}\lambda_i \left( g_i(\tau_i) - \frac{G_g^T}{N^p} \right)} }% { {\color{red}c^s} + \sum\limits_{i=1}^n p_i {\color{red}\lambda_i c_i \tau_i} }% \end{equation*} \vspace{\stretch{1}} \begin{equation*} \E(G_1) + \E(C_1) - w \E(C_1) = \frac% { {\color{darkgreen}-w c^s} + \sum\limits_{i=1}^n p_i {\color{darkgreen}\lambda_i \left( g_i(\tau_i) - w_i c_i \tau_i \right)} }% { \sum\limits_{i=1}^n p_i {\color{red}\lambda_i} }% \end{equation*} \vspace{\stretch{2}}} % \end{slide} \begin{slide}[toc=Lumped Tasks]{Constant Disadvantage Case} \textbf{Assume that} \begin{itemize} \item $d_j$ is constant for all $\tau_j$ \item $\frac{a_j}{d_j}$ achieves its maximum at $\tau_j^*$ \end{itemize} % \pause \textbf{Index so that} % \begin{equation*} \frac{ a_1(\tau_1^*) }{ d_1(\tau_1^*) } > \frac{ a_2(\tau_2^*) }{ d_2(\tau_2^*) } > \cdots > \frac{ a_{n-1}(\tau_{n-1}^*) }{ d_{n-1}(\tau_{n-1}^*) } > \frac{ a_n(\tau_n^*) }{ d_n(\tau_n^*) } \end{equation*} % \pause \textbf{Exclude when} % \begin{equation*} \frac{ a + \sum\limits_{i=1}^k a_i(\tau_i^*) }{ d + \sum\limits_{i=1}^k d_i(\tau_i^*) } > \frac{ a_{k+1}(\tau_{k+1}^*) }{ d_{k+1}(\tau_{k+1}^*) } \end{equation*} % \end{slide} \begin{slide}[toc=Variable Time]{Generalized \ac{MVT}} \onslide*{1-4}{% \textbf{Assume that} \begin{equation*} \left( \frac{a_j}{d_j} \right)' < 0 \text{ for all } \tau_j \pause \quad \text{ (maximum at } \tau_j^* = 0 \text{)} \end{equation*} % \pause \textbf{Index so that} % \begin{equation*} \frac{ a_1(0) }{ d_1(0) } > \frac{ a_2(0) }{ d_2(0) } > \cdots > \frac{ a_{n-1}(0) }{ d_{n-1}(0) } > \frac{ a_n(0) }{ d_n(0) } \end{equation*} % \pause \textbf{Exclude when} % \begin{equation*} \frac{ a + \sum\limits_{i=1}^k a_i(\tau_i^k) }{ d + \sum\limits_{i=1}^k d_i(\tau_i^k) } > \frac{ a_{k+1}(0) }{ d_{k+1}(0) } \end{equation*}% } % \onslide*{5,6}{\vspace{\stretch{1}} \textbf{where $\tau_j^k$ is found with} % \begin{equation*} \frac{ a'_k(\tau_j^k) }{ d'_k(\tau_j^k) } = \frac{ a + \sum\limits_{i=1}^k a_i(\tau_i^k) }{ d + \sum\limits_{i=1}^k d_i(\tau_i^k) } \end{equation*} % \onslide{6}{This is a generalized version of the marginal value theorem.} % \vspace{\stretch{1}}% } % \end{slide} \section[slide=false]{Remarks} \begin{slide}[toc=,bm=]{Concluding Remarks} % \begin{itemize} \item<2-> Simple stochastic model of a solitary agent \item<3-> Provided analytical tools for finding optimal agent behavior \item<4-> Model can be expanded (\eg, recognition cost, behavior-dependent rates, nonlinear fuel costs) \item<5-> Optimization approaches can be enhanced using methods from post-modern portfolio theory \item<6-> Behaviors should be implemented on real agents \end{itemize} % \end{slide} \section[slide=false]{Questions?} \begin{slide}[toc=,bm=]{Questions?} \textbf{Major Influences} \begin{itemize} \item \bibentry{Cha76}. \item \bibentry{Cha73}. \item \bibentry{SK86}. \end{itemize} \end{slide} \section[tocsection=hidden]{Follow-Up} \begin{slide}{Applications} \onslide*{2,3}{\begin{itemize} \item<2-> Military \begin{itemize} \item Surveillance \item Offensive action \end{itemize} \item<3-> {\color{blue}Robotic Exploration} (\eg, \emph{\texttt{DEPTHX}}) \begin{itemize} \item Deep Sea \item Space \end{itemize} \end{itemize}} \onslide*{4,5,6,7}{\begin{itemize} \item<4-> Limited resources \begin{itemize} \item<5-> Retrieval space \item<5-> Objects to deploy \end{itemize} \item<6-> Prioritization during real-time search \item<7-> Failure thresholds (\eg, $G^T$) \end{itemize}} \onslide*{8,9,10,11}{\begin{itemize} \item Information foraging of human beings (\ie, analysis) \begin{itemize} \item<9-> Web behavior consistent with foraging predictions \item<9-> Design technology based on behavioral analysis \item<10-> Content delivery based on encounter characteristics of search \item<11-> Advertising \end{itemize} \end{itemize}} \end{slide} \begin{slide}{Future Directions} \onslide*{2,3,4,5,6,7,8,9,10}{\begin{itemize} \item<2-> Model can be expanded \begin{itemize} \item<3-> Behavior-dependent encounter rates \item<4-> Recognition costs \item<5-> Nonlinear cost functions \item<6-> Parameter uncertainty and estimation \item<7-> Relax Poisson assumption \end{itemize} \item<8-> New stochastic optimization criteria \begin{itemize} \item<9-> Skew-sensitive objectives \item<10-> Use of lower-partial moments \end{itemize} \end{itemize}} \onslide*{11,12,13,14,15,16,17,18}{\begin{itemize} \item<11-> \ac{PMPT}: Stochastic dominance \begin{itemize} \item<12-> {\color{red}Static} approach \item<13-> Embraces risk sensitivity and a wider range of return distributions \end{itemize} \item<14-> State-based {\color{darkgreen}dynamic} programming methods \begin{itemize} \item<15-> Modern approach \item<16-> {\color{darkgreen}Improves performance} \item<17-> {\color{red}Increases behavioral complexity} \item<18-> Better machines and human-in-loop systems prevent complexity problems \item<18-> Parameter estimation can be built-in \end{itemize} \end{itemize}} \end{slide} \begin{slide}{Questions?} \textbf{Influences for Future Work} % \twocolumn{\begin{itemize} \item {\tiny\bibentry{Bawa75}.} \item {\tiny\bibentry{Bawa82}.} \item {\tiny\bibentry{Bawa78}.} \item {\tiny\bibentry{BL77}.} \end{itemize}}{\begin{itemize} \item {\tiny\bibentry{Caraco80}.} \item {\tiny\bibentry{HouMc99}.} \item {\tiny\bibentry{MnglClk88}.} \end{itemize}} % \end{slide} \end{document}