% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z % Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z % Digits 0 1 2 3 4 5 6 7 8 9 % Exclamation ! Double quote " Hash (number) # % Dollar % Ampersand & % Acute accent ' Left paren ( Right paren ) % Asterisk * Plus + Comma , % Minus - Point . Solidus / % Colon : Semicolon ; Less than < % Equals = Greater than > Question mark ? % At @ Left bracket [ Backslash % Right bracket ] Circumflex ^ Underscore _ % Grave accent ` Left brace { Vertical bar | % Right brace } Tilde ~ % ---------------------------------------------------------------------| % --------------------------- 72 characters ---------------------------| % ---------------------------------------------------------------------| % % Optimal Foraging Theory Revisited: macros for generation of % List of Symbols % % (c) Copyright 2007 by Theodore P. Pavlic % % This list was generated by makeappsyms Perl script (and the % fixmysyms[.bat] frontend), which generates symbols from the old % oft_zapp_math.tex. The content here has been modified from the % makeappsyms output: % % *) Fixes an output bug in vector transpose entry (the square brackets % confused the Perl script) % % *) Adds \index and \aimention entries \sym{*conventions}{{[\texttt {xx}]}}{see reference number \texttt {xx} in \hyperref [ch:bibliography]{the bibliography}} \sym{Ageneral.0}{$=$}{\index{mathematics"!equality ($=$)"|indexglo}is equal to} \sym{Ageneral.0}{$\triangleq $}{\index{mathematics"!definition ($\triangleq$)"|indexglo}defined as} \sym{Csets.0}{$\set {X}$}{a set $\set {X}$} \sym{Csets.1a}{$\{a,b,c\}$}{a set of objects $a$, $b$, and $c$} \sym{Csets.1aa}{$\dots $}{continue the established pattern \adinfinitum {} (\eg{}, the infinite set $\{1,2,3,\dots \}$)} \sym{Csets.1b}{$\emptyset $}{\index{mathematics"!sets"!empty set ($\emptyset$)"|indexglo}the empty set (\ie{}, $\{\}$)} \sym{Csets.1b}{$\in $}{is an element of (\ie{}, \index{mathematics"!sets"!set element ($\in$)"|indexglo}set inclusion)} \sym{Csets.1b}{$\notin $}{is not an element of (\ie{}, \index{mathematics"!sets"!exclusion ($\notin$)"|indexglo}set exclusion)} \sym{Csets.1c}{$\subseteq $ ($\supseteq $)}{is a \index{mathematics"!sets"!subset ($\subseteq$ or $\subset$)"|indexglo}subset (superset) of} \sym{Csets.1d}{$\set {X} = \set {Y}$}{set $\set {X}$ is equal to set $\set {Y}$ (\ie{}, $\set {X} \subseteq \set {Y}$ and $\set {Y} \subseteq \set {X}$)} \sym{Csets.1d}{$\set {X} \neq \set {Y}$}{set $\set {X}$ is not equal to set $\set {Y}$} \sym{Csets.1c}{$\subset $ ($\supset $)}{is a \index{mathematics"!sets"!superset ($\supseteq$ or $\supset$)"|indexglo}proper/strict subset (superset) of} \sym{Csets.1ab}{$\{ u : p \}$}{set of all elements of $u$ such that $p$} \sym{Csets.1ab}{$\{ u : p, q, r \}$}{set of all elements of $u$ such that $p$, $q$, and $r$} \sym{Dseq.0}{$x(i)$~or~$x_i$~or~$x^i$}{alternate notations for an index $i$ on a symbol $x$} \sym{Csets.2cart0}{$(a,b)$}{\index{mathematics"!ordered pair"|indexglo}ordered pair of objects $a$ and $b$ (\ie{}, $(a,b) \triangleq \{\{a\},\{a,b\}\}$)} \sym{Csets.2cart01}{$(x_1,x_2,\dots ,x_n)$}{$n$-tuple (\ie{}, \index{mathematics"!n-tuple"@$n$-tuple"|indexglo}tuple of length $n \in \N $ with coordinates $x_1$, $x_2$,\dots ,$x_n$ in their respective order)} \sym{Csets.2cart1}{$\set {X} \times \set {Y}$}{\index{mathematics"!sets"!Cartesian product ($\times$)"|(indexglo}(binary) \aimention{Ren\'{e} Descartes}Cartesian product of sets $\set {X}$ and $\set {Y}$ (\ie{}, $\set {X} \times \set {Y} \triangleq \{(x,y):x \in \set {X}, y \in \set {Y}\}$)} \sym{Csets.2cart10}{$\set {X}_1 \times \cdots \times \set {X}_n$}{\aimention{Ren\'{e} Descartes}Cartesian product of $n$ sets $\set {X}_1$, \dots , $\set {X}_n$ (\ie{}, $\set {X}_1 \times \cdots \times \set {X}_n \triangleq \{(x_1,\dots ,x_n):x_1 \in \set {X}_1, \dots , x_n \in \set {X}_n\}$)} \sym{Csets.2cart11}{$\set {X}^n$}{\aimention{Ren\'{e} Descartes}Cartesian product of set $\set {X}$ with itself $n$ times (\eg{}, $\set {X}^3 \triangleq \set {X} \times \set {X} \times \set {X}$)\index{mathematics"!sets"!Cartesian product ($\times$)"|)indexglo}} \sym{Ganalysis.0011}{$f: \set {X} \mapsto \set {Y}$}{a \index{mathematics"!functions"|indexglo}function $f$ with domain $\set {X}$ and codomain $\set {Y}$} \sym{Dseq.1}{$(x_i:i \in \set {I})$}{an indexed family with index set $\set {I}$ (also $(x_i)_{i \in \set {I}}$)} \sym{Dseq.2}{$(x(t):t \geq 0)$}{an ordered indexed family with a directed index set $\set {T}$ where $0 \in \set {T}$} %\sym{Ageneral.2}{$\cong $}{is congruent to} \sym{Csets.1zz}{$\pipe \set {X}\pipe $}{cardinality of set $\set {X}$} \sym{Csets.1z}{$\Pow (\set {U})$}{\index{mathematics"!sets"!power set ($\Pow$)"|indexglo}power set of set $\set {U}$ (\ie{}, the set of all subsets of $\set {U}$)} \sym{Csets.207}{$\set {X}^c$}{\index{mathematics"!sets"!set complement (${}^c$)"|indexglo}complement of set $\set {X}^c$ (\eg{}, $\set {U} \setdiff \set {X}$ where $\set {X} \subseteq \set {U}$)} \sym{Csets.202}{$\set {X} \cup \set {Y}$}{\index{mathematics"!sets"!set union ($\cup$)"|indexglo}set union (or join) of sets $\set {X}$ and $\set {Y}$} \sym{Csets.2}{$\bigcup $}{union of many sets (compare to $\sum $)} \sym{Csets.201}{$\set {X} \cap \set {Y}$}{\index{mathematics"!sets"!set intersection ($\cap$)"|indexglo}set intersection (or meet) of sets $\set {X}$ and $\set {Y}$} \sym{Csets.2}{$\bigcap $}{intersection of many sets (compare to $\sum $)} \sym{Csets.203}{$\set {X} \setdiff \set {Y}$}{\index{mathematics"!sets"!set difference ($\setdiff$)"|indexglo}difference of sets $\set {X}$ and $\set {Y}$} %\sym{Csets.204}{$\set {X} \symdiff \set {Y}$}{symmetric difference of sets $\set {X}$ and $\set {Y}$ (\ie{}, an exclusive union; $(\set {X} \cup \set {Y}) \setdiff (\set {Y} \cap \set {X})$)} %\sym{Elogic.exists0}{$\forall $}{for all/any} %\sym{Elogic.exists1}{$\exists $}{there exists} %\sym{Elogic.exists1}{$\nexists $}{there does not exist} %\sym{Elogic.exists1}{$\exists \bang $}{there exists a unique} \sym{Elogic}{$\implies $}{\index{mathematics"!logic"!implication ($\implies$)"|indexglo}logical implication} \sym{Elogic}{$\iff $}{\index{mathematics"!logic"!equivalence ($\iff$)"|indexglo}logical equivalence} %\sym{Csets.3}{${[a]}$}{equivalence class (\eg{}, $\{x \in \set {X} : x = a \}$)} %\sym{Csets.31}{$\set {X}/{=}$}{quotient set induced by set $\set {X}$ over relation $=$ (\ie{}, set of all $\sim $ equivalence classes in $\set {X}$)} \sym{Ageneral.5}{$\leq $ ($\geq $)}{less (greater) than or equal to} \sym{Ageneral.5}{$<$ ($>$)}{strictly less (greater) than} %\sym{Forder.02}{$x \land y$}{the pairwise meet (\ie{}, greatest lower bound) of $x$ and $y$} %\sym{Forder.02}{$x \lor y$}{the pairwise join (\ie{}, least upper bound) of $x$ and $y$} \sym{Csets.2intervals1}{${[a,b]}$}{\index{mathematics"!numbers"!real number intervals"|(indexglo}interval $[a,b] \triangleq \{ x \in \set {X} : a \leq x \leq b \}$} \sym{Csets.2intervals2}{${(a,b]}$}{interval $(a,b] \triangleq \{ x \in \set {X} : a < x \leq b \}$} \sym{Csets.2intervals3}{${[a,b)}$}{interval $[a,b) \triangleq \{ x \in \set {X} : a \leq x < b \}$} \sym{Csets.2intervals4}{${(a,b)}$}{interval $(a,b) \triangleq \{ x \in \set {X} : a < x < b \}$\index{mathematics"!numbers"!real number intervals"|)indexglo}} %\sym{Forder.11}{$\bigwedge $}{join of a set (\ie{}, lowest upper bound or supremum)} \sym{Forder.201}{$\sup $}{\index{mathematics"!order"!supremum ($\sup$)"|indexglo}supremum (\ie{}, lowest upper bound or join)} \sym{Forder.202}{$\max $}{\index{mathematics"!order"!maximum ($\max$)"|indexglo}maximum element} %\sym{Forder.12}{$\bigvee $}{meet of a set (\ie{}, greatest lower bound or infimum)} \sym{Forder.201}{$\inf $}{\index{mathematics"!order"!infimum ($\inf$)"|indexglo}infimum (\ie{}, greatest lower bound or meet)} \sym{Forder.202}{$\min $}{\index{mathematics"!order"!minimum ($\min$)"|indexglo}minimum element} \sym{Dseq.3}{$(x_\alpha )$}{a net (\ie{}, an ordered indexed family $(x_\alpha : \alpha \in \set {A})$ with directed index set $\set {A}$)} \sym{Dseq.3}{$(x_n)$}{a sequence (\ie{}, an ordered indexed family $(x_n : n \in \N )$ with totally ordered index set $\N $)} \sym{Ageneral.541}{$x + y$}{sum of $x$ and $y$} \sym{Ageneral.542}{$x \times y$}{product of $x$ and $y$ (also denoted $xy$)} \sym{Ageneral.543}{$-x$}{additive inverse of $x$} \sym{Ageneral.5431}{$x - y$}{difference of $x$ and $y$ (\ie{}, $x - y \triangleq x + -y$)} \sym{Ageneral.5432}{$\sgn (x)$}{sign function of $x$} \sym{Ageneral.5433}{$\pipe x \pipe $}{\index{mathematics\"!numbers\"!absolute value\"|indexglo}absolute value of $x$ (\ie{}, $x = \sgn (x) \pipe x \pipe $)} \sym{Ageneral.z}{$\sum $}{sum of elements of a set} \sym{Ageneral.z}{$\prod $}{product of elements of a set} \sym{Bnumbers.2}{$\W $}{the set of the \index{mathematics"!numbers"!whole numbers ($\W$)"|indexglo}whole numbers (\ie{}, $\{0,1,2,3,\dots \}$)} \sym{Bnumbers.1}{$\N $}{the set of the \index{mathematics"!numbers"!natural numbers ($\N$)"|indexglo}natural numbers (\ie{}, $\{1,2,3,\dots \}$)} \sym{Bnumbers.3}{$\Z $}{the set of the \index{mathematics"!numbers"!integers ($\Z$)"|indexglo}integers (\ie{}, $\{\dots ,-3,-2,-1,0,1,2,3,\dots \}$)} \sym{Bnumbers.4}{$\Q $}{the set of the \index{mathematics"!numbers"!rationals ($\Q$)"|indexglo}rationals (\ie{}, ratios of integers)} \sym{Bnumbers.50}{$\R $}{the set of the \index{mathematics"!numbers"!real numbers ($\R$)"|indexglo}real numbers} \sym{Bnumbers.510}{$\R _{>0}$}{the set of the \index{mathematics"!numbers"!real positive numbers ($\R_{>0}$)"|indexglo}strictly positive real numbers} \sym{Bnumbers.511}{$\R _{\geq 0}$}{the set of the \index{mathematics"!numbers"!real non-negative numbers ($\R_{\geq0}$)"|indexglo}non-negative real numbers} \sym{Bnumbers.520}{$\R _{<0}$}{the set of the \index{mathematics"!numbers"!real negative numbers ($\R_{<0}$)"|indexglo}strictly negative real numbers} \sym{Bnumbers.521}{$\R _{\leq 0}$}{the set of the \index{mathematics"!numbers"!real non-positive numbers ($\R_{\leq0}$)"|indexglo}non-positive real numbers} \sym{Bnumbers.53}{$\R _{\neq 0}$}{the set of the \index{mathematics"!numbers"!real non-zero numbers ($\R_{\neq0}$)"|indexglo}non-zero real numbers} \sym{Bnumbers.61}{$\lfloor x \rfloor $}{the floor of real number $x$ (\ie{}, the greatest integer not greater than $x$)} \sym{Bnumbers.60}{$\lceil x \rceil $}{the ceiling of real number $x$ (\ie{}, the least integer not less than $x$)} \sym{Bnumbers.54}{$\extR $}{the set of the \index{mathematics"!numbers"!extended real numbers ($\extR$)"|indexglo}extended real numbers (\ie{}, $\R \cup \{-\infty ,+\infty \}$)} %\sym{Ganalysis.0001}{$\nhd _x$}{neighborhood system of $x$ (\ie{}, set of all topological neighborhoods of $x$)} \sym{Ganalysis.120}{$\to $}{a limit} %\sym{Ganalysis.1201}{$\setset {B} \to p$}{filter base $\setset {B}$ converges to $p$} \sym{Ganalysis.10}{$\lim $}{\index{mathematics"!limit ($\lim$ or $\to$)"|indexglo}limit (\eg{}, unique limit of filter base, function, net, or sequence)} %\sym{Ganalysis.11}{$\liminf $}{limit inferior (\ie{}, $\sup \inf $)} %\sym{Ganalysis.11}{$\limsup $}{limit superior (\ie{}, $\inf \sup $)} %\sym{Ganalysis.00000}{$B(x;r)$}{open metric ball of radius $r$ centered at $x$} %\sym{Ganalysis.00001}{${B[x;r]}$}{closed metric ball of radius $r$ centered at $x$} \sym{Ganalysis.122}{$f(x) \to q$}{limit of function $f$ (\eg{}, as $x \to p$)} \sym{Ganalysis.121}{$p_n \to p$}{limit of sequence $(p_n)$} \sym{Ganalysis.2b}{$f'(x_0)$}{the \index{mathematics"!functions"!total derivative ($\total$)"|indexglo}first (total) derivative of function $f$ at point $x_0$} \sym{Ganalysis.2a}{$f'(x_0+)$}{the right-hand derivative of function $f$ at point $x_0$} \sym{Ganalysis.2a}{$f'(x_0-)$}{the left-hand derivative of function $f$ at point $x_0$} \sym{Ganalysis.2b2}{$f''(x_0)$}{the second (ordinary) derivative of function $f$ at point $x_0$} \sym{Ganalysis.2b3}{$f'''(x_0)$}{the third (ordinary) derivative of function $f$ at point $x_0$} \sym{Ganalysis.2b4}{$f^{(n)}(x_0)$}{the $n\th $ (ordinary) derivative of function $f$ at point $x_0$ where $n \in \{4,5,6,\dots \}$} \sym{Ganalysis.2y}{$\total f/\total t$}{total derivative of function $f$ at point $t$} \sym{Ganalysis.2z}{$\partial f/\partial x$}{\index{mathematics"!functions"!partial derivative ($\partial$)"|indexglo}partial derivative of function $f$ with respect to $x$} \sym{Ganalysis.2y2}{$\total ^2 f/{\total t}^2$}{second total derivative of function $f$ (\ie{}, $f''$)} \sym{Ganalysis.2y3}{$\total ^3 f/{\total t}^3$}{third total derivative of function $f$ (\ie{}, $f'''$)} \sym{Ganalysis.2yn}{$\total ^n f/{\total t}^n$}{$n\th $ total derivative of function $f$ (\ie{}, $f^{(n)}$)} \sym{Ganalysis.2zxy}{$\partial ^2 f/\partial x \partial y$}{partial derivative of function $\partial f/\partial x$ with respect to $y$} \sym{Bnumbers.55}{$e$}{\aimention{Leonhard Euler}Euler's number (\ie{}, constant $e \approx 2.71828182845904523536$)} \sym{Ganalysis.001}{${n\bang }$}{factorial of $n$ (\ie{}, ${n\bang }=1\times 2\times \cdots \times n$ with ${0\bang }=1$)} \sym{Ageneral.1}{$\approx $}{is approximately equal to} \sym{Bnumbers.595}{$\exp (x)$}{exponential function (\ie{}, $\exp (x) \triangleq e^x$)} \sym{Bnumbers.58}{$\ln (x)$}{natural logarithm of positive real number $x$ (\ie{}, $e^{\ln (x)} = x$)} \sym{Bnumbers.57}{$\log (x)$}{common logarithm of positive real number $x$ (\ie{}, $10^{\log (x)} = x$)} \sym{Bnumbers.56}{$\log _b(x)$}{logarithm of positive real number $x$ in base $b$ (\ie{}, $b^{\log _b(x)} = x$)} \sym{Hvectors.2}{$y_i$}{the $i\th $ coordinate of vector $\v {y}$} \sym{Hvectors.42}{$\v {e}_i$}{the $i\th $ elementary (or standard) basis vector} \sym{Hvectors.3}{$\v {x}^\T$}{the \index{mathematics"!vector spaces"!vector transpose (${}^\T$)"|indexglo}transpose of vector or covector $\v {x}$ (\ie{}, if $\v {x}$ is an $n$-vector then $\v {x} = [x_1, x_2, \dots , x_n]^\T )$} %\sym{Hvectors.4}{$\langle \v {x}, \v {y} \rangle $}{the inner product of vectors $\v {x}$ and $\v {y}$} %\sym{Hvectors.401}{$\ppipe \v {x} \ppipe $}{the norm of vector $\v {x}$} %\sym{Hvectors.402}{$\ppipe \v {x} \ppipe _2$}{the \aimention{Euclid}Euclidean norm of vector $\v {x}$ (\ie{}, the norm induced by the dot product)} \sym{Bnumbers.545}{$\R ^n$}{the \index{mathematics"!numbers"!Euclidean $n$-space ($\R^n$)"|indexglo}\aimention{Euclid}Euclidean $n$-space} \sym{Bnumbers.5451}{$\R ^{n \times m}$}{space of $n$-by-$m$ real matrices} \sym{Hvectors.31}{$\mat {A}^\T $}{the \index{mathematics"!vector spaces"!matrix transpose (${}^\T$)"|indexglo}transpose of matrix $\mat {A}$} \sym{Hvectors.45}{$\I $}{the identity matrix} \sym{Bnumbers.5452}{$\R ^{n \times n}$}{the unitary associative real algebra} \sym{Hvectors.5}{$\nabla _{\v {x}} f(\v {x})$}{the \index{mathematics"!functions"!gradient ($\nabla$)"|indexglo}gradient vector of function $f$ at $\v {x}$} \sym{Hvectors.51}{$\nabla ^2_{\v {x}\v {x}} f(\v {x})$}{the \index{mathematics"!functions"!Hessian ($\nabla^2$)"|indexglo}\aimention{Ludwig Otto Hesse}Hessian matrix of function $f$ at point $\v {x}$} \sym{Iprob.3}{$\Borel (\set {U})$}{the \index{mathematics"!sets"!Borel algebra ($\Borel$)"|indexglo}\aimention{\'{E}mile Borel}Borel algebra of set $\set{U}$ (\ie, $\Borel(\set{U})$ is the minimal a $\sigma$-algebra containing the open sets; elements of $\Borel(\set{U})$ are called \emph{\aimention{\'{E}mile Borel}Borel sets} and are subsets of $\set{U}$, so $\Borel(\set{U} \in \Pow(\set{U})$} \sym{Iprob.4}{$\int _a^b f(x) \total x$}{the \index{mathematics"!functions"!integral ($\int$)"|indexglo}\aimention{Henri L. Lebesgue}Lebesgue integral of function $f$ over interval $[a,b] \subset \extR $ with respect to the \aimention{Henri L. Lebesgue}Lebesgue measure} \sym{Iprob.5}{$\delta _a(\set {E})$}{Dirac delta measure of set $\set {E}$ at point $a$ (\eg{}, $f(0) = \linebreak [4] \int _{-1}^1 f(x) \delta _0(\{x\}) \total x$)} \sym{Iprob.50}{$\delta (x-p)$}{Simplified Dirac delta measure notation (\ie{}, $\delta (x-p) \triangleq \delta _p(\{x\})$)} \sym{Iprob.41}{$f * g$}{\index{mathematics"!functions"!convolution ($*$)"|indexglo}convolution of function $f$ with function $g$ (\ie{}, $(f * g)(t) \triangleq \int _{-\infty }^\infty f(\tau ) g(t-\tau ) \total \tau $)} \sym{Iprob.541}{$(\set {U},\Sigma ,\Pr)$}{\index{stochasticity"!probability space"|indexglo}Probability space with outcomes $\set {U}$, $\sigma $-field of events $\Sigma $, and probability measure $\Pr $} \sym{Iprob.540}{$\Pr $}{\index{stochasticity"!probability measure"|indexglo}Probability measure} \sym{Iprob.545}{$\{X \leq a\}$}{Measurable set induced by preimage of random variable $X$ (\ie{}, \linebreak [3] $\{ \zeta \in \set {U} : X(\zeta ) \leq a \}$)} \sym{Iprob.546}{$\Pr (X \leq a)$}{Probability induced by preimage of random variable $X$ (\ie{}, \linebreak [3] $\Pr (\{ \zeta \in \set {U} : X(\zeta ) \leq a \})$)} \sym{Iprob.55}{$F_X(x)$}{\index{stochasticity"!random variable"!cumulative distribution function ($F$)"|indexglo}Cumulative distribution function for random variable $X$ (\ie{}, $F_X(a) \triangleq \Pr (X \leq a)$)} %\sym{Iprob.55}{$F_X(x+)$}{Limit superior of $F_x$ at point $p$} \sym{Iprob.56}{$f_X(x)$}{\index{stochasticity"!random variable"!probability density function ($f$)"|indexglo}Probability density function for random variable $X$ (\ie{}, $F_X(a) = \int _{-\infty }^a f_X(x) \total x$)} \sym{Iprob.61}{$\E (g(X))$}{\index{stochasticity"!statistics"!expectation of function"|indexglo}Expectation of function $g$ of random variable $X$ (\ie{}, \linebreak [4] $\int _{-\infty }^\infty g(x) f_X(x) \total x$)} \sym{Iprob.60}{$\E (X)$}{\index{stochasticity"!statistics"!expectation ($\E$)"|indexglo}Expectation of random variable $X$ (\ie{}, \linebreak [4] $\int _{-\infty }^\infty x f_X(x) \total x$)} \sym{Iprob.62}{$\var (X)$}{\index{stochasticity"!statistics"!variance ($\var$)|indexglo}Variance of random variable $X$ (\ie{}, $\var (X) = \E (X^2) - \E (X)^2$)} \sym{Iprob.63}{$\cov (X,Y)$}{Covariance of random variables $X$ and $Y$ (\ie{}, $\cov (X,Y) = \E (XY) - \E (X)\E (Y)$)} \sym{Iprob.65}{$F_{XY}(x,y)$}{Joint distribution function for random variables $X$ and $Y$ (\ie{}, $F_{XY}(a,b) \triangleq \Pr (X \leq a, Y \leq b)$)} \sym{Iprob.66}{$f_{XY}(x,y)$}{Joint density function for random variables $X$ and $Y$} \sym{Iprob.670}{$f_{Y \pipe X}(y \pipe x)$}{Conditional density function for random variable $Y$ given $X=x$} \sym{Iprob.671}{$F_{Y \pipe X}(y \pipe x)$}{Conditional distribution function for random variable $Y$ given $X=x$} \sym{Iprob.68}{$\E (Y \pipe X)$}{\index{stochasticity"!statistics"!conditional expectation"|indexglo}Conditional expectation of $Y$ given $X$} \sym{Iprob.70}{$( \v {N}(t) : t \in \R _{\geq 0})$}{\index{stochasticity"!random process"|indexglo}Random process (\ie{}, $\v {N}(t)$ is a random vector for all $t \in \R _{>0}$)} %\sym{Iprob.72}{$Y(t) \to Y$}{Random process $Y(t)$ converges surely to $Y$} %\sym{Iprob.7201}{$Y(t) \xto {s.} Y$}{Random process $Y(t)$ converges surely to $Y$} %\sym{Iprob.7202}{$\lim \limits _{t\to \infty } Y(t) = Y$}{Random process $Y(t)$ converges surely to $Y$} \sym{Iprob.7301}{$Y(t) \xto {a.s.} Y$}{\index{stochasticity"!random process"!almost sure limit ($\aslim$ or $\xto{a.s.}$)"|indexglo}Random process $Y(t)$ converges almost surely (\ie{}, $\Pr(\lim_{t \to \infty} Y(t) = Y) = 1$) to $Y$} %\sym{Iprob.7302}{$Y(t) \xto {w.p.1} Y$}{Random process $Y(t)$ converges almost surely (\ie{}, with probability 1) to $Y$} \sym{Iprob.7303}{$\aslim \limits _{t \to \infty } Y(t) = Y$}{Random process $Y(t)$ converges almost surely (\ie{}, with probability 1) to $Y$} %\sym{Iprob.7401}{$Y(t) \xto {P} Y$}{Random process $Y(t)$ converges in probability to random variable $Y$} %\sym{Iprob.7402}{$Y(t) \xto {\Pr } Y$}{Random process $Y(t)$ converges in probability to random variable $Y$} %\sym{Iprob.7403}{$\plim \limits _{t \to \infty } Y(t) = Y$}{Random process $Y(t)$ converges in probability to random variable $Y$} %\sym{Iprob.7501}{$Y(t) \xto {m.} Y$}{Random process $Y(t)$ converges in the mean to random variable $Y$} %\sym{Iprob.7502}{$\limean \limits _{t \to \infty } Y(t) = Y$}{Random process $Y(t)$ converges in the mean to random variable $Y$ (\ie{}, $Y$ is \emph {l}imit \emph {i}n the \emph {m}ean)} %\sym{Iprob.7503}{$Y(t) \xto {m.s.} Y$}{Random process $Y(t)$ converges in the mean square to random variable $Y$} %\sym{Iprob.7504}{$\mslim \limits _{t \to \infty } Y(t) = Y$}{Random process $Y(t)$ converges in the mean square to random variable $Y$} %\sym{Iprob.7601}{$Y(t) \xto {D} Y$}{Random process $Y(t)$ converges in distribution to random variable $Y$} %\sym{Iprob.7602}{$Y(t) \xto {d} Y$}{Random process $Y(t)$ converges in distribution to random variable $Y$} %\sym{Iprob.7603}{$\dlim \limits _{t \to \infty } Y(t) = Y$}{Random process $Y(t)$ converges in distribution to random variable $Y$}