\relax \citation{Stoll79} \citation{Viniotis98} \citation{JW96} \@writefile{toc}{\contentsline {chapter}{\numberline {B.}Mathematical Background}{101}{appendix.182}} \newlabel{app:math}{{B}{101}{Mathematical Background\relax }{appendix.182}{}} \@writefile{symbols}{\indexentry{*conventions@[{[\texttt {xx}]}] see reference number \texttt {xx} in \hyperref [ch:bibliography]{the bibliography}|nopage}{101}} \@writefile{symbols}{\indexentry{Ageneral.0@[$=$] is equal to~\bhypersym {sym:equals}|nopage}{101}} \newlabel{def:sym:equals}{{B}{101}{Mathematical Background\relax }{appendix.182}{}} \@writefile{symbols}{\indexentry{Ageneral.0@[$\triangleq $] defined as~\bhypersym {sym:definedas}|nopage}{101}} \newlabel{def:sym:definedas}{{B}{101}{Mathematical Background\relax }{appendix.182}{}} \@writefile{brf}{\backcite{Stoll79}{{101}{B}{appendix.182}}} \citation{JW96} \@writefile{toc}{\contentsline {section}{\numberline {B.1}Sets}{102}{section.183}} \newlabel{app:math_sets}{{B.1}{102}{Sets\relax }{section.183}{}} \@writefile{brf}{\backcite{Viniotis98}{{102}{B.1}{section.183}}} \@writefile{brf}{\backcite{JW96}{{102}{B.1}{section.183}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.1}Sets: Definition and Examples}{102}{subsection.184}} \@writefile{symbols}{\indexentry{Csets.0@[$\set {X}$] a set $\set {X}$~\bhypersym {sym:set}|nopage}{102}} \newlabel{def:sym:set}{{B.1.1}{102}{Sets: Definition and Examples\relax }{subsection.184}{}} \@writefile{symbols}{\indexentry{Csets.1a@[$\{a,b,c\}$] a set of objects $a$, $b$, and $c$~\bhypersym {sym:longset}|nopage}{102}} \newlabel{def:sym:longset}{{B.1.1}{102}{Sets: Definition and Examples\relax }{subsection.184}{}} \@writefile{acronyms}{\indexentry{ZFC@[ZFC] Zermelo-Fraenkel set theory with the axiom of choice assumed~\bhypersym {acro:ZFC}|nopage}{102}} \newlabel{def:acro:ZFC}{{B.1.1}{102}{Sets: Definition and Examples\relax }{subsection.184}{}} \@writefile{acronyms}{\indexentry{ZF@[ZF] Zermelo-Fraenkel set theory~\bhypersym {acro:ZF}|nopage}{102}} \newlabel{def:acro:ZF}{{B.1.1}{102}{Sets: Definition and Examples\relax }{subsection.184}{}} \@writefile{brf}{\backcite{JW96}{{103}{B.1.1}{subsection.184}}} \@writefile{toc}{\contentsline {paragraph}{Notation:}{103}{section*.185}} \newlabel{eq:ex_sets}{{B.1}{103}{Notation:\relax }{equation.186}{}} \newlabel{eq:ex_set_Z}{{B.1a}{103}{Notation:\relax }{equation.187}{}} \newlabel{eq:ex_set_Q}{{B.1b}{103}{Notation:\relax }{equation.188}{}} \newlabel{eq:ex_set_J}{{B.1c}{103}{Notation:\relax }{equation.189}{}} \newlabel{eq:ex_set_S}{{B.1d}{103}{Notation:\relax }{equation.190}{}} \newlabel{eq:ex_set_O}{{B.1e}{103}{Notation:\relax }{equation.191}{}} \@writefile{toc}{\contentsline {paragraph}{Numbers and Infinite Sets:}{104}{section*.192}} \newlabel{eq:some_countably_infinite_sets}{{B.2}{104}{Numbers and Infinite Sets:\relax }{equation.193}{}} \newlabel{eq:some_countably_infinite_sets_a}{{B.2a}{104}{Numbers and Infinite Sets:\relax }{equation.194}{}} \newlabel{eq:some_countably_infinite_sets_b}{{B.2b}{104}{Numbers and Infinite Sets:\relax }{equation.195}{}} \newlabel{eq:some_countably_infinite_sets_c}{{B.2c}{104}{Numbers and Infinite Sets:\relax }{equation.196}{}} \@writefile{symbols}{\indexentry{Csets.1aa@[$\dots $] continue the established pattern \adinfinitum {} (\eg , the infinite set $\{1,2,3,\dots \}$)~\bhypersym {sym:dots}|nopage}{104}} \newlabel{def:sym:dots}{{B.1.1}{104}{Numbers and Infinite Sets:\relax }{equation.196}{}} \newlabel{eq:whole_numbers}{{B.3}{105}{Numbers and Infinite Sets:\relax }{equation.197}{}} \newlabel{eq:natural_numbers}{{B.4}{105}{Numbers and Infinite Sets:\relax }{equation.198}{}} \newlabel{eq:zero}{{B.5a}{105}{Numbers and Infinite Sets:\relax }{equation.200}{}} \newlabel{eq:one}{{B.5b}{105}{Numbers and Infinite Sets:\relax }{equation.201}{}} \newlabel{eq:two}{{B.5c}{105}{Numbers and Infinite Sets:\relax }{equation.202}{}} \newlabel{eq:three}{{B.5d}{105}{Numbers and Infinite Sets:\relax }{equation.203}{}} \@writefile{symbols}{\indexentry{Csets.1b@[$\emptyset $] the empty set (\ie , $\{\}$)~\bhypersym {sym:emptyset}|nopage}{106}} \newlabel{def:sym:emptyset}{{B.1.1}{106}{Numbers and Infinite Sets:\relax }{equation.203}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.2}Set Inclusion, Set Exclusion, Subsets, and Supersets}{106}{subsection.204}} \@writefile{toc}{\contentsline {paragraph}{Inclusion and Exclusion:}{106}{section*.205}} \@writefile{symbols}{\indexentry{Csets.1b@[$\in $] is an element of (\ie , set inclusion)~\bhypersym {sym:in}|nopage}{106}} \newlabel{def:sym:in}{{B.1.2}{106}{Inclusion and Exclusion:\relax }{section*.205}{}} \@writefile{symbols}{\indexentry{Csets.1b@[$\notin $] is not an element of (\ie , set exclusion)~\bhypersym {sym:notin}|nopage}{106}} \newlabel{def:sym:notin}{{B.1.2}{106}{Inclusion and Exclusion:\relax }{section*.205}{}} \@writefile{toc}{\contentsline {paragraph}{Containment:}{106}{section*.206}} \@writefile{symbols}{\indexentry{Csets.1c@[$\subseteq $ ($\supseteq $)] is a subset (superset) of~\bhypersym {sym:subsupseteq}|nopage}{106}} \newlabel{def:sym:subsupseteq}{{B.1.2}{106}{Containment:\relax }{section*.206}{}} \@writefile{symbols}{\indexentry{Csets.1d@[$\set {X} = \set {Y}$] set $\set {X}$ is equal to set $\set {Y}$ (\ie , $\set {X} \subseteq \set {Y}$ and $\set {Y} \subseteq \set {X}$)~\bhypersym {sym:setequal}|nopage}{107}} \newlabel{def:sym:setequal}{{B.1.2}{107}{Equality:\relax }{section*.207}{}} \@writefile{symbols}{\indexentry{Csets.1d@[$\set {X} \neq \set {Y}$] set $\set {X}$ is not equal to set $\set {Y}$~\bhypersym {sym:setnotequal}|nopage}{107}} \newlabel{def:sym:setnotequal}{{B.1.2}{107}{Equality:\relax }{section*.207}{}} \@writefile{toc}{\contentsline {paragraph}{Equality:}{107}{section*.207}} \@writefile{symbols}{\indexentry{Csets.1c@[$\subset $ ($\supset $)] is a proper/strict subset (superset) of~\bhypersym {sym:subsupset}|nopage}{107}} \newlabel{def:sym:subsupset}{{B.1.2}{107}{Strict Containment:\relax }{section*.208}{}} \@writefile{toc}{\contentsline {paragraph}{Strict Containment:}{107}{section*.208}} \@writefile{toc}{\contentsline {paragraph}{Containment of Empty Set:}{107}{section*.209}} \@writefile{toc}{\contentsline {paragraph}{The Size of Sets:}{107}{section*.210}} \@writefile{toc}{\contentsline {paragraph}{Infinite Sets:}{108}{section*.211}} \@writefile{symbols}{\indexentry{Csets.1ab@[$\{ u : p \}$] set of all elements of $u$ such that $p$~\bhypersym {sym:setbuilder}|nopage}{108}} \newlabel{def:sym:setbuilder}{{B.1.2}{108}{Set-Builder Notation:\relax }{section*.212}{}} \@writefile{toc}{\contentsline {paragraph}{Set-Builder Notation:}{108}{section*.212}} \@writefile{symbols}{\indexentry{Csets.1ab@[$\{ u : p, q, r \}$] set of all elements of $u$ such that $p$, $q$, and $r$~\bhypersym {sym:setbuilderlong}|nopage}{108}} \newlabel{def:sym:setbuilderlong}{{B.1.2}{108}{Set-Builder Notation:\relax }{section*.212}{}} \@writefile{symbols}{\indexentry{Dseq.0@[$x(i)$~or~$x_i$~or~$x^i$] alternate notations for an index $i$ on a symbol $x$~\bhypersym {sym:indexnotation}|nopage}{108}} \newlabel{def:sym:indexnotation}{{B.1.2}{108}{Set-Builder Notation:\relax }{section*.212}{}} \@writefile{toc}{\contentsline {paragraph}{Index Notation and Index Sets:}{108}{section*.213}} \@writefile{toc}{\contentsline {paragraph}{Natural and Whole Numbers:}{109}{section*.214}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.3}The Ordered Pair}{110}{subsection.215}} \newlabel{app:math_ordered_pair}{{B.1.3}{110}{The Ordered Pair\relax }{subsection.215}{}} \@writefile{symbols}{\indexentry{Csets.2cart0@[$(a,b)$] ordered pair of objects $a$ and $b$ (\ie , $(a,b) \triangleq \{\{a\},\{a,b\}\}$)~\bhypersym {sym:orderedpair}|nopage}{110}} \newlabel{def:sym:orderedpair}{{B.1.3}{110}{The Ordered Pair\relax }{subsection.215}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.4}The Ordered Tuple}{111}{subsection.216}} \@writefile{symbols}{\indexentry{Csets.2cart01@[$(x_1,x_2,\dots ,x_n)$] $n$-tuple (\ie , tuple of length $n \in \N $ with coordinates $x_1$, $x_2$,\dots ,$x_n$ in their respective order)~\bhypersym {sym:ntuple}|nopage}{112}} \newlabel{def:sym:ntuple}{{B.1.4}{112}{The Ordered Tuple\relax }{subsection.216}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.5}Cartesian Products}{113}{subsection.217}} \newlabel{app:math_cartesian_prod}{{B.1.5}{113}{Cartesian Products\relax }{subsection.217}{}} \@writefile{symbols}{\indexentry{Csets.2cart1@[$\set {X} \times \set {Y}$] (binary) Cartesian product of sets $\set {X}$ and $\set {Y}$ (\ie , $\set {X} \times \set {Y} \triangleq \{(x,y):x \in \set {X}, y \in \set {Y}\}$)~\bhypersym {sym:cartesian2}|nopage}{113}} \newlabel{def:sym:cartesian2}{{B.1.5}{113}{Cartesian Products\relax }{subsection.217}{}} \@writefile{symbols}{\indexentry{Csets.2cart10@[$\set {X}_1 \times \cdots \times \set {X}_n$] Cartesian product of $n$ sets $\set {X}_1$, \dots , $\set {X}_n$ (\ie , $\set {X}_1 \times \cdots \times \set {X}_n \triangleq \{(x_1,\dots ,x_n):x_1 \in \set {X}_1, \dots , x_n \in \set {X}_n\}$)~\bhypersym {sym:cartesian}|nopage}{114}} \newlabel{def:sym:cartesian}{{B.1.5}{114}{Cartesian Products\relax }{subsection.217}{}} \@writefile{symbols}{\indexentry{Csets.2cart11@[$\set {X}^n$] Cartesian product of set $\set {X}$ with itself $n$ times (\eg , $\set {X}^3 \triangleq \set {X} \times \set {X} \times \set {X}$)~\bhypersym {sym:cartesiann}|nopage}{115}} \newlabel{def:sym:cartesiann}{{B.1.5}{115}{Cartesian Products\relax }{subsection.217}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.6}Functions: Mappings Between Sets}{116}{subsection.218}} \newlabel{app:math_functions}{{B.1.6}{116}{Functions: Mappings Between Sets\relax }{subsection.218}{}} \@writefile{symbols}{\indexentry{Ganalysis.0011@[$f: \set {X} \mapsto \set {Y}$] a function $f$ with domain $\set {X}$ and codomain $\set {Y}$~\bhypersym {sym:function}|nopage}{116}} \newlabel{def:sym:function}{{B.1.6}{116}{Functions: Mappings Between Sets\relax }{subsection.218}{}} \@writefile{toc}{\contentsline {paragraph}{Examples:}{116}{section*.219}} \newlabel{fig:functions_injective}{{B.1(a)}{117}{Subfigure B B.1(a)\relax }{subfigure.220}{}} \newlabel{sub@fig:functions_injective}{{(a)}{(a)}{Subfigure B B.1(a)\relax }{subfigure.220}{}} \newlabel{fig:functions_surjective}{{B.1(b)}{117}{Subfigure B B.1(b)\relax }{subfigure.221}{}} \newlabel{sub@fig:functions_surjective}{{(b)}{(b)}{Subfigure B B.1(b)\relax }{subfigure.221}{}} \newlabel{fig:functions_bijective}{{B.1(c)}{117}{Subfigure B B.1(c)\relax }{subfigure.222}{}} \newlabel{sub@fig:functions_bijective}{{(c)}{(c)}{Subfigure B B.1(c)\relax }{subfigure.222}{}} \newlabel{fig:functions_inverse}{{B.1(d)}{117}{Subfigure B B.1(d)\relax }{subfigure.223}{}} \newlabel{sub@fig:functions_inverse}{{(d)}{(d)}{Subfigure B B.1(d)\relax }{subfigure.223}{}} \@writefile{lof}{\contentsline {figure}{\numberline {B.1}{\ignorespaces Examples of the Four Types of Functions.}}{117}{figure.224}} \newlabel{fig:functions}{{B.1}{117}{Examples of the Four Types of Functions}{figure.224}{}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces Injective Function}}{117}{subfigure.220}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces Surjective Function}}{117}{subfigure.221}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces Bijective Function}}{117}{subfigure.222}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces Function Inverse}}{117}{subfigure.223}} \@writefile{toc}{\contentsline {paragraph}{The Identity Function:}{118}{section*.225}} \@writefile{toc}{\contentsline {paragraph}{Compositions, and the Inverse:}{119}{section*.226}} \newlabel{fig:function_comps_surjective_injective_composition}{{B.2(a)}{119}{Subfigure B B.2(a)\relax }{subfigure.227}{}} \newlabel{sub@fig:function_comps_surjective_injective_composition}{{(a)}{(a)}{Subfigure B B.2(a)\relax }{subfigure.227}{}} \newlabel{fig:function_comps_surjective_injective}{{B.2(b)}{119}{Subfigure B B.2(b)\relax }{subfigure.228}{}} \newlabel{sub@fig:function_comps_surjective_injective}{{(b)}{(b)}{Subfigure B B.2(b)\relax }{subfigure.228}{}} \newlabel{fig:function_comps_identity_composition}{{B.2(c)}{119}{Subfigure B B.2(c)\relax }{subfigure.229}{}} \newlabel{sub@fig:function_comps_identity_composition}{{(c)}{(c)}{Subfigure B B.2(c)\relax }{subfigure.229}{}} \newlabel{fig:function_comps_identity}{{B.2(d)}{119}{Subfigure B B.2(d)\relax }{subfigure.230}{}} \newlabel{sub@fig:function_comps_identity}{{(d)}{(d)}{Subfigure B B.2(d)\relax }{subfigure.230}{}} \@writefile{lof}{\contentsline {figure}{\numberline {B.2}{\ignorespaces Examples of Function Composition.}}{119}{figure.231}} \newlabel{fig:function_comps}{{B.2}{119}{Examples of Function Composition}{figure.231}{}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces Surjective Composed with Injective}}{119}{subfigure.227}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces Composition of Injective with Surjective}}{119}{subfigure.228}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces Inverse Composed with Its Bijective}}{119}{subfigure.229}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces Composition of Inverse with Its Bijective}}{119}{subfigure.230}} \@writefile{toc}{\contentsline {paragraph}{The Range of a Function:}{120}{section*.232}} \@writefile{toc}{\contentsline {paragraph}{Images:}{120}{section*.233}} \@writefile{toc}{\contentsline {paragraph}{Pre-images:}{121}{section*.234}} \@writefile{toc}{\contentsline {paragraph}{Images of Sets of Sets:}{121}{section*.235}} \@writefile{toc}{\contentsline {paragraph}{Function Restrictions:}{122}{section*.236}} \@writefile{toc}{\contentsline {paragraph}{Closure Under a Function:}{122}{section*.237}} \@writefile{toc}{\contentsline {paragraph}{Functions of Cartesian Products:}{122}{section*.238}} \@writefile{toc}{\contentsline {paragraph}{Partial Functions:}{123}{section*.239}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.7}Indexed Families}{123}{subsection.240}} \newlabel{app:math_indexed_families}{{B.1.7}{123}{Indexed Families\relax }{subsection.240}{}} \@writefile{symbols}{\indexentry{Dseq.1@[$(x_i:i \in \set {I})$] an indexed family with index set $\set {I}$ (also $(x_i)_{i \in \set {I}}$)~\bhypersym {sym:indexedfamily}|nopage}{124}} \newlabel{def:sym:indexedfamily}{{B.1.7}{124}{Indexed Families\relax }{subsection.240}{}} \@writefile{toc}{\contentsline {paragraph}{Ordered Indexed Families:}{124}{section*.241}} \@writefile{symbols}{\indexentry{Dseq.2@[$(x(t):t \geq 0)$] an ordered indexed family with a directed index set $\set {T}$ where $0 \in \set {T}$~\bhypersym {sym:orderedindexedfamily}|nopage}{124}} \newlabel{def:sym:orderedindexedfamily}{{B.1.7}{124}{Ordered Indexed Families:\relax }{section*.241}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.8}Congruent Sets}{125}{subsection.242}} \newlabel{app:math_congruent_sets}{{B.1.8}{125}{Congruent Sets\relax }{subsection.242}{}} \@writefile{toc}{\contentsline {paragraph}{Congruence by Bijection:}{126}{section*.243}} \@writefile{symbols}{\indexentry{Ageneral.2@[$\cong $] is congruent to~\bhypersym {sym:congruent}|nopage}{126}} \newlabel{def:sym:congruent}{{B.1.8}{126}{Congruence by Bijection:\relax }{section*.243}{}} \@writefile{toc}{\contentsline {paragraph}{Countably and Uncountably Infinite Sets:}{127}{section*.244}} \@writefile{toc}{\contentsline {paragraph}{Cartesian Product and Sets of Functions:}{128}{section*.245}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.9}Cardinality}{128}{subsection.246}} \newlabel{app:math_cardinality}{{B.1.9}{128}{Cardinality\relax }{subsection.246}{}} \@writefile{toc}{\contentsline {paragraph}{Finite Cardinality and Congruence:}{129}{section*.247}} \@writefile{symbols}{\indexentry{Csets.1zz@[$\pipe \set {X}\pipe $] cardinality of set $\set {X}$~\bhypersym {sym:cardinality}|nopage}{129}} \newlabel{def:sym:cardinality}{{B.1.9}{129}{Finite Cardinality and Congruence:\relax }{section*.247}{}} \@writefile{toc}{\contentsline {paragraph}{Cardinality of Infinite Sets:}{130}{section*.248}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.10}Power Sets}{131}{subsection.249}} \newlabel{app:math_power_sets}{{B.1.10}{131}{Power Sets\relax }{subsection.249}{}} \@writefile{symbols}{\indexentry{Csets.1z@[$\Pow (\set {U})$] power set of set $\set {U}$ (\ie , the set of all subsets of $\set {U}$)~\bhypersym {sym:powerset}|nopage}{131}} \newlabel{def:sym:powerset}{{B.1.10}{131}{Power Sets\relax }{subsection.249}{}} \newlabel{item:power_set_emptyincl}{{i}{131}{Power Sets\relax }{Item.250}{}} \newlabel{item:power_set_setincl}{{ii}{131}{Power Sets\relax }{Item.251}{}} \@writefile{toc}{\contentsline {paragraph}{Notations:}{131}{section*.253}} \@writefile{toc}{\contentsline {paragraph}{Cardinality:}{132}{section*.254}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.11}The Universal Set and the Complement of a Set}{132}{subsection.255}} \newlabel{app:math_universal_set}{{B.1.11}{132}{The Universal Set and the Complement of a Set\relax }{subsection.255}{}} \@writefile{symbols}{\indexentry{Csets.207@[$\set {X}^c$] complement of set $\set {X}^c$ (\eg , $\set {U} \setdiff \set {X}$ where $\set {X} \subseteq \set {U}$)~\bhypersym {sym:complement}|nopage}{132}} \newlabel{def:sym:complement}{{B.1.11}{132}{The Universal Set and the Complement of a Set\relax }{subsection.255}{}} \@writefile{toc}{\contentsline {paragraph}{Power Set as Universal Set:}{133}{section*.256}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.12}Operations on Sets}{134}{subsection.257}} \newlabel{app:math_set_operations}{{B.1.12}{134}{Operations on Sets\relax }{subsection.257}{}} \@writefile{toc}{\contentsline {paragraph}{Union:}{134}{section*.258}} \@writefile{symbols}{\indexentry{Csets.202@[$\set {X} \cup \set {Y}$] set union (or join) of sets $\set {X}$ and $\set {Y}$~\bhypersym {sym:union}|nopage}{134}} \newlabel{def:sym:union}{{B.1.12}{134}{Union:\relax }{section*.258}{}} \@writefile{symbols}{\indexentry{Csets.2@[$\bigcup $] union of many sets (compare to $\sum $)~\bhypersym {sym:bigunion}|nopage}{135}} \newlabel{def:sym:bigunion}{{B.1.12}{135}{Union:\relax }{section*.258}{}} \@writefile{toc}{\contentsline {paragraph}{Intersection:}{135}{section*.259}} \@writefile{symbols}{\indexentry{Csets.201@[$\set {X} \cap \set {Y}$] set intersection (or meet) of sets $\set {X}$ and $\set {Y}$~\bhypersym {sym:intersection}|nopage}{135}} \newlabel{def:sym:intersection}{{B.1.12}{135}{Intersection:\relax }{section*.259}{}} \@writefile{symbols}{\indexentry{Csets.2@[$\bigcap $] intersection of many sets (compare to $\sum $)~\bhypersym {sym:bigintersection}|nopage}{136}} \newlabel{def:sym:bigintersection}{{B.1.12}{136}{Intersection:\relax }{section*.259}{}} \@writefile{toc}{\contentsline {paragraph}{Difference:}{137}{section*.260}} \@writefile{symbols}{\indexentry{Csets.203@[$\set {X} \setdiff \set {Y}$] difference of sets $\set {X}$ and $\set {Y}$~\bhypersym {sym:setdiff}|nopage}{137}} \newlabel{def:sym:setdiff}{{B.1.12}{137}{Difference:\relax }{section*.260}{}} \@writefile{toc}{\contentsline {paragraph}{Symmetric Difference:}{137}{section*.261}} \@writefile{symbols}{\indexentry{Csets.204@[$\set {X} \symdiff \set {Y}$] symmetric difference of sets $\set {X}$ and $\set {Y}$ (\ie , an exclusive union; $(\set {X} \cup \set {Y}) \setdiff (\set {Y} \cap \set {X})$)~\bhypersym {sym:setsymdiff}|nopage}{137}} \newlabel{def:sym:setsymdiff}{{B.1.12}{137}{Symmetric Difference:\relax }{section*.261}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.13}Partitions of Sets}{139}{subsection.262}} \newlabel{app:math_sets_partitions}{{B.1.13}{139}{Partitions of Sets\relax }{subsection.262}{}} \@writefile{toc}{\contentsline {paragraph}{Mutually Exclusive and Pairwise Disjoint:}{139}{section*.263}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.14}Geometric Interpretation of Set Operations}{140}{subsection.264}} \newlabel{app:math_sets_venn_diagram}{{B.1.14}{140}{Geometric Interpretation of Set Operations\relax }{subsection.264}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.15}Commutativity, Associativity, and Distributivity of Set Operations}{141}{subsection.272}} \newlabel{app:math_sets_cadso}{{B.1.15}{141}{Commutativity, Associativity, and Distributivity of Set Operations\relax }{subsection.272}{}} \@writefile{toc}{\contentsline {paragraph}{Commutativity:}{141}{section*.273}} \@writefile{toc}{\contentsline {paragraph}{Associativity:}{141}{section*.274}} \newlabel{fig:venn_set}{{B.3(a)}{142}{Subfigure B B.3(a)\relax }{subfigure.265}{}} \newlabel{sub@fig:venn_set}{{(a)}{(a)}{Subfigure B B.3(a)\relax }{subfigure.265}{}} \newlabel{fig:venn_complement}{{B.3(b)}{142}{Subfigure B B.3(b)\relax }{subfigure.266}{}} \newlabel{sub@fig:venn_complement}{{(b)}{(b)}{Subfigure B B.3(b)\relax }{subfigure.266}{}} \newlabel{fig:venn_union}{{B.3(c)}{142}{Subfigure B B.3(c)\relax }{subfigure.267}{}} \newlabel{sub@fig:venn_union}{{(c)}{(c)}{Subfigure B B.3(c)\relax }{subfigure.267}{}} \newlabel{fig:venn_intersection}{{B.3(d)}{142}{Subfigure B B.3(d)\relax }{subfigure.268}{}} \newlabel{sub@fig:venn_intersection}{{(d)}{(d)}{Subfigure B B.3(d)\relax }{subfigure.268}{}} \newlabel{fig:venn_difference}{{B.3(e)}{142}{Subfigure B B.3(e)\relax }{subfigure.269}{}} \newlabel{sub@fig:venn_difference}{{(e)}{(e)}{Subfigure B B.3(e)\relax }{subfigure.269}{}} \newlabel{fig:venn_symdifference}{{B.3(f)}{142}{Subfigure B B.3(f)\relax }{subfigure.270}{}} \newlabel{sub@fig:venn_symdifference}{{(f)}{(f)}{Subfigure B B.3(f)\relax }{subfigure.270}{}} \@writefile{lof}{\contentsline {figure}{\numberline {B.3}{\ignorespaces Graphical Interpretation of Set Operations}}{142}{figure.271}} \newlabel{fig:venn_diagrams}{{B.3}{142}{Graphical Interpretation of Set Operations\relax }{figure.271}{}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Set $\ensuremath {\mathcal {X}}$}}}{142}{subfigure.265}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Set Complement $\ensuremath {\mathcal {X}}^c$}}}{142}{subfigure.266}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Set Union $\ensuremath {\mathcal {X}} \cup \ensuremath {\mathcal {Y}}$}}}{142}{subfigure.267}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Set Intersection $\ensuremath {\mathcal {X}} \cap \ensuremath {\mathcal {Y}}$}}}{142}{subfigure.268}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {Set Difference $\ensuremath {\mathcal {X}} \ensuremath {-}\ensuremath {\mathcal {Y}}$}}}{142}{subfigure.269}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {Symmetric Difference $\ensuremath {\mathcal {X}} \ensuremath {\mathbin {\Delta }}\ensuremath {\mathcal {Y}}$}}}{142}{subfigure.270}} \citation{Martin04} \citation{Gabbay02} \citation{Hinman05} \citation{Stoll79} \@writefile{toc}{\contentsline {paragraph}{Distributivity of Intersection and Union:}{143}{section*.275}} \@writefile{toc}{\contentsline {paragraph}{Distributivity of Intersection over Symmetric Difference:}{143}{section*.276}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1.16}The Set-Theoretic De Morgan's Laws}{143}{subsection.277}} \newlabel{app:math_sets_dml}{{B.1.16}{143}{The Set-Theoretic De Morgan's Laws\relax }{subsection.277}{}} \@writefile{toc}{\contentsline {section}{\numberline {B.2}Propositional Logic}{144}{section.278}} \newlabel{app:math_logic}{{B.2}{144}{Propositional Logic\relax }{section.278}{}} \@writefile{brf}{\backcite{Martin04}{{144}{B.2}{section.278}}} \@writefile{brf}{\backcite{Gabbay02}{{144}{B.2}{section.278}}} \@writefile{brf}{\backcite{Hinman05}{{144}{B.2}{section.278}}} \@writefile{brf}{\backcite{Stoll79}{{144}{B.2}{section.278}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2.1}Sentences}{144}{subsection.279}} \@writefile{symbols}{\indexentry{Elogic.exists0@[$\forall $] for all/any~\bhypersym {sym:forall}|nopage}{145}} \newlabel{def:sym:forall}{{B.2.1}{145}{Sentences\relax }{subsection.279}{}} \@writefile{symbols}{\indexentry{Elogic.exists1@[$\exists $] there exists~\bhypersym {sym:exists}|nopage}{145}} \newlabel{def:sym:exists}{{B.2.1}{145}{Sentences\relax }{subsection.279}{}} \@writefile{symbols}{\indexentry{Elogic.exists1@[$\nexists $] there does not exist~\bhypersym {sym:nexists}|nopage}{145}} \newlabel{def:sym:nexists}{{B.2.1}{145}{Sentences\relax }{subsection.279}{}} \@writefile{symbols}{\indexentry{Elogic.exists1@[$\exists \bang $] there exists a unique~\bhypersym {sym:existsunique}|nopage}{145}} \newlabel{def:sym:existsunique}{{B.2.1}{145}{Sentences\relax }{subsection.279}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2.2}Logical Connectives and Compound Sentences}{145}{subsection.280}} \@writefile{toc}{\contentsline {paragraph}{And and Or:}{146}{section*.281}} \@writefile{toc}{\contentsline {paragraph}{Negation:}{146}{section*.282}} \@writefile{toc}{\contentsline {paragraph}{Implication:}{147}{section*.283}} \@writefile{symbols}{\indexentry{Elogic@[$\implies $] logical implication~\bhypersym {sym:implies}|nopage}{147}} \newlabel{def:sym:implies}{{B.2.2}{147}{Implication:\relax }{section*.283}{}} \@writefile{toc}{\contentsline {paragraph}{Equivalence:}{147}{section*.284}} \@writefile{symbols}{\indexentry{Elogic@[$\iff $] logical equivalence~\bhypersym {sym:iff}|nopage}{147}} \newlabel{def:sym:iff}{{B.2.2}{147}{Equivalence:\relax }{section*.284}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2.3}Converse, Inverse, and Contraposition}{147}{subsection.285}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2.4}Commutativity, Associativity, and Distributivity of Logic Operations}{148}{subsection.286}} \newlabel{app:math_logic_cadso}{{B.2.4}{148}{Commutativity, Associativity, and Distributivity of Logic Operations\relax }{subsection.286}{}} \@writefile{toc}{\contentsline {paragraph}{Commutativity of And and Or:}{148}{section*.287}} \@writefile{toc}{\contentsline {paragraph}{Associativity of And and Or:}{148}{section*.288}} \@writefile{toc}{\contentsline {paragraph}{Distributivity of And and Or:}{148}{section*.289}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2.5}The Logical De Morgan's Laws}{149}{subsection.290}} \newlabel{app:math_logic_dml}{{B.2.5}{149}{The Logical De Morgan's Laws\relax }{subsection.290}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2.6}Application of Logic to Mathematical Proof}{149}{subsection.291}} \newlabel{eq:math_logic_application_proof}{{B.2.6}{149}{Application of Logic to Mathematical Proof\relax }{subsection.291}{}} \@writefile{toc}{\contentsline {section}{\numberline {B.3}Order Theory}{149}{section.292}} \newlabel{app:math_order_theory}{{B.3}{149}{Order Theory\relax }{section.292}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.1}Relations}{150}{subsection.293}} \newlabel{app:math_relations}{{B.3.1}{150}{Relations\relax }{subsection.293}{}} \@writefile{toc}{\contentsline {paragraph}{Examples:}{150}{section*.294}} \@writefile{toc}{\contentsline {paragraph}{Chains of Relations:}{151}{section*.295}} \@writefile{toc}{\contentsline {paragraph}{Set Relations and the Power Set:}{151}{section*.296}} \@writefile{toc}{\contentsline {paragraph}{Notation:}{152}{section*.297}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.2}Equivalence Relations on a Set}{152}{subsection.298}} \newlabel{app:math_equivalence_relations}{{B.3.2}{152}{Equivalence Relations on a Set\relax }{subsection.298}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.3}Equivalence Class}{153}{subsection.299}} \newlabel{app:equivalence_class}{{B.3.3}{153}{Equivalence Class\relax }{subsection.299}{}} \@writefile{symbols}{\indexentry{Csets.3@[${[a]}$] equivalence class (\eg , $\{x \in \set {X} : x = a \}$)~\bhypersym {sym:equivclass}|nopage}{153}} \newlabel{def:sym:equivclass}{{B.3.3}{153}{Equivalence Class\relax }{subsection.299}{}} \@writefile{symbols}{\indexentry{Csets.31@[$\set {X}/{=}$] quotient set induced by set $\set {X}$ over relation $=$ (\ie , set of all $\sim $ equivalence classes in $\set {X}$)~\bhypersym {sym:quotientset}|nopage}{153}} \newlabel{def:sym:quotientset}{{B.3.3}{153}{Equivalence Class\relax }{subsection.299}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.4}Preorder Relations on a Set}{154}{subsection.300}} \newlabel{item:preorder_reflexivity}{{i}{154}{Preorder Relations on a Set\relax }{Item.301}{}} \newlabel{item:preorder_transitivity}{{ii}{154}{Preorder Relations on a Set\relax }{Item.302}{}} \@writefile{toc}{\contentsline {paragraph}{Preorders as Equivalence Relations:}{154}{section*.303}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.5}Directed Sets}{154}{subsection.304}} \newlabel{item:directed_reflexivity}{{i}{154}{Directed Sets\relax }{Item.305}{}} \newlabel{item:directed_transitivity}{{ii}{154}{Directed Sets\relax }{Item.306}{}} \newlabel{item:directed_directedness}{{iii}{155}{Directed Sets\relax }{Item.307}{}} \@writefile{toc}{\contentsline {paragraph}{Downward Directed Sets:}{155}{section*.308}} \newlabel{item:downdirected_reflexivity}{{i}{155}{Downward Directed Sets:\relax }{Item.309}{}} \newlabel{item:downdirected_transitivity}{{ii}{155}{Downward Directed Sets:\relax }{Item.310}{}} \newlabel{item:downdirected_directedness}{{iii}{155}{Downward Directed Sets:\relax }{Item.311}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.6}Partial Order Relations on a Set}{155}{subsection.312}} \newlabel{app:partial_order_relations}{{B.3.6}{155}{Partial Order Relations on a Set\relax }{subsection.312}{}} \newlabel{item:poset_reflexivity}{{i}{155}{Partial Order Relations on a Set\relax }{Item.313}{}} \newlabel{item:poset_antisymmetry}{{ii}{155}{Partial Order Relations on a Set\relax }{Item.314}{}} \newlabel{item:poset_transitivity}{{iii}{155}{Partial Order Relations on a Set\relax }{Item.315}{}} \@writefile{symbols}{\indexentry{Ageneral.5@[$\leq $ ($\geq $)] less (greater) than or equal to~\bhypersym {sym:ineq}|nopage}{156}} \newlabel{def:sym:ineq}{{B.3.6}{156}{Partial Order Relations on a Set\relax }{Item.315}{}} \@writefile{symbols}{\indexentry{Ageneral.5@[$<$ ($>$)] strictly less (greater) than~\bhypersym {sym:strictineq}|nopage}{156}} \newlabel{def:sym:strictineq}{{B.3.6}{156}{Partial Order Relations on a Set\relax }{Item.315}{}} \@writefile{toc}{\contentsline {paragraph}{Meets, Joins, and Lattices:}{156}{section*.316}} \@writefile{symbols}{\indexentry{Forder.02@[$x \land y$] the pairwise meet (\ie , greatest lower bound) of $x$ and $y$~\bhypersym {sym:meet}|nopage}{156}} \newlabel{def:sym:meet}{{i}{156}{Meets, Joins, and Lattices:\relax }{Item.317}{}} \@writefile{symbols}{\indexentry{Forder.02@[$x \lor y$] the pairwise join (\ie , least upper bound) of $x$ and $y$~\bhypersym {sym:join}|nopage}{157}} \newlabel{def:sym:join}{{ii}{157}{Meets, Joins, and Lattices:\relax }{Item.318}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.7}Total Ordering on a Set}{158}{subsection.319}} \newlabel{app:math_total_order_set}{{B.3.7}{158}{Total Ordering on a Set\relax }{subsection.319}{}} \newlabel{item:toset_totality}{{i}{158}{Total Ordering on a Set\relax }{Item.320}{}} \newlabel{item:toset_antisymmetry}{{ii}{158}{Total Ordering on a Set\relax }{Item.321}{}} \newlabel{item:toset_transitivity}{{iii}{158}{Total Ordering on a Set\relax }{Item.322}{}} \@writefile{toc}{\contentsline {paragraph}{Totally Ordered Set as a Lattice:}{159}{section*.323}} \@writefile{toc}{\contentsline {paragraph}{Total Ordering as Directed Set:}{159}{section*.324}} \@writefile{toc}{\contentsline {paragraph}{Whole Numbers as Example:}{159}{section*.325}} \@writefile{toc}{\contentsline {paragraph}{Comparison to Partially Ordered Sets:}{160}{section*.326}} \@writefile{toc}{\contentsline {paragraph}{Intervals of Totally Ordered Sets:}{160}{section*.327}} \@writefile{symbols}{\indexentry{Csets.2intervals1@[${[a,b]}$] interval $[a,b] \triangleq \{ x \in \set {X} : a \leq x \leq b \}$~\bhypersym {sym:interval1}|nopage}{160}} \newlabel{def:sym:interval1}{{B.3.7}{160}{Intervals of Totally Ordered Sets:\relax }{section*.327}{}} \@writefile{symbols}{\indexentry{Csets.2intervals2@[${(a,b]}$] interval $(a,b] \triangleq \{ x \in \set {X} : a < x \leq b \}$~\bhypersym {sym:interval2}|nopage}{160}} \newlabel{def:sym:interval2}{{B.3.7}{160}{Intervals of Totally Ordered Sets:\relax }{section*.327}{}} \@writefile{symbols}{\indexentry{Csets.2intervals3@[${[a,b)}$] interval $[a,b) \triangleq \{ x \in \set {X} : a \leq x < b \}$~\bhypersym {sym:interval3}|nopage}{160}} \newlabel{def:sym:interval3}{{B.3.7}{160}{Intervals of Totally Ordered Sets:\relax }{section*.327}{}} \@writefile{symbols}{\indexentry{Csets.2intervals4@[${(a,b)}$] interval $(a,b) \triangleq \{ x \in \set {X} : a < x < b \}$~\bhypersym {sym:interval4}|nopage}{160}} \newlabel{def:sym:interval4}{{B.3.7}{160}{Intervals of Totally Ordered Sets:\relax }{section*.327}{}} \@writefile{toc}{\contentsline {paragraph}{Dense Ordering:}{161}{section*.328}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.8}Upper and Lower Bounds}{161}{subsection.329}} \newlabel{app:math_upper_lower_bound}{{B.3.8}{161}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{symbols}{\indexentry{Forder.11@[$\bigwedge $] join of a set (\ie , lowest upper bound or supremum)~\bhypersym {sym:infbigwedge}|nopage}{161}} \newlabel{def:sym:infbigwedge}{{B.3.8}{161}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{symbols}{\indexentry{Forder.201@[$\sup $] supremum (\ie , lowest upper bound or join)~\bhypersym {sym:sup}|nopage}{161}} \newlabel{def:sym:sup}{{B.3.8}{161}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{symbols}{\indexentry{Forder.202@[$\max $] maximum element~\bhypersym {sym:max}|nopage}{162}} \newlabel{def:sym:max}{{B.3.8}{162}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{symbols}{\indexentry{Forder.12@[$\bigvee $] meet of a set (\ie , greatest lower bound or infimum)~\bhypersym {sym:infbigvee}|nopage}{162}} \newlabel{def:sym:infbigvee}{{B.3.8}{162}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{symbols}{\indexentry{Forder.201@[$\inf $] infimum (\ie , greatest lower bound or meet)~\bhypersym {sym:inf}|nopage}{162}} \newlabel{def:sym:inf}{{B.3.8}{162}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{symbols}{\indexentry{Forder.202@[$\min $] minimum element~\bhypersym {sym:min}|nopage}{162}} \newlabel{def:sym:min}{{B.3.8}{162}{Upper and Lower Bounds\relax }{subsection.329}{}} \@writefile{toc}{\contentsline {paragraph}{Bounded Poset Bounds:}{162}{section*.330}} \@writefile{toc}{\contentsline {paragraph}{Gapless and Complete:}{162}{section*.331}} \newlabel{item:lub_property}{{i}{163}{Gapless and Complete:\relax }{Item.332}{}} \newlabel{item:glb_property}{{ii}{163}{Gapless and Complete:\relax }{Item.333}{}} \@writefile{toc}{\contentsline {paragraph}{Existence of Upper Bounded Set Maxima:}{163}{section*.334}} \@writefile{toc}{\contentsline {paragraph}{Existence of Lower Bounded Set Minima:}{164}{section*.335}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.9}Order-Preserving Functions and Order Isomorphic Sets}{164}{subsection.336}} \newlabel{app:math_order_preserving}{{B.3.9}{164}{Order-Preserving Functions and Order Isomorphic Sets\relax }{subsection.336}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.10}Filters on Partially Ordered Sets}{164}{subsection.337}} \newlabel{app:math_filters_on_posets}{{B.3.10}{164}{Filters on Partially Ordered Sets\relax }{subsection.337}{}} \newlabel{item:poset_filter_base}{{i}{164}{Filters on Partially Ordered Sets\relax }{Item.338}{}} \newlabel{item:poset_upper_set}{{ii}{164}{Filters on Partially Ordered Sets\relax }{Item.339}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3.11}Nets and Sequences}{165}{subsection.340}} \newlabel{app:math_nets_and_sequences}{{B.3.11}{165}{Nets and Sequences\relax }{subsection.340}{}} \@writefile{symbols}{\indexentry{Dseq.3@[$(x_\alpha )$] a net (\ie , an ordered indexed family $(x_\alpha : \alpha \in \set {A})$ with directed index set $\set {A}$)~\bhypersym {sym:net}|nopage}{165}} \newlabel{def:sym:net}{{B.3.11}{165}{Nets and Sequences\relax }{subsection.340}{}} \@writefile{toc}{\contentsline {paragraph}{Sequences:}{165}{section*.341}} \@writefile{symbols}{\indexentry{Dseq.3@[$(x_n)$] a sequence (\ie , an ordered indexed family $(x_n : n \in \N )$ with totally ordered index set $\N $)~\bhypersym {sym:sequence}|nopage}{165}} \newlabel{def:sym:sequence}{{B.3.11}{165}{Sequences:\relax }{section*.341}{}} \@writefile{toc}{\contentsline {paragraph}{Monotonic Sequences:}{165}{section*.342}} \citation{Roman92} \@writefile{toc}{\contentsline {section}{\numberline {B.4}Elementary Abstract Algebra}{166}{section.343}} \newlabel{app:math_abstract_algebra}{{B.4}{166}{Elementary Abstract Algebra\relax }{section.343}{}} \@writefile{brf}{\backcite{Roman92}{{166}{B.4}{section.343}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.1}Operations}{166}{subsection.344}} \newlabel{app:math_operations}{{B.4.1}{166}{Operations\relax }{subsection.344}{}} \@writefile{toc}{\contentsline {paragraph}{Set Operations and the Power Set:}{167}{section*.345}} \@writefile{toc}{\contentsline {paragraph}{Magma Notation:}{168}{section*.346}} \@writefile{toc}{\contentsline {paragraph}{Multiple-Operator Notation:}{168}{section*.347}} \@writefile{toc}{\contentsline {paragraph}{Implicit Operators:}{168}{section*.348}} \@writefile{toc}{\contentsline {paragraph}{Order of Operations, Grouping Symbols, and Precedence:}{168}{section*.349}} \newlabel{eq:bin_oper_QR}{{B.6}{169}{Order of Operations, Grouping Symbols, and Precedence:\relax }{equation.350}{}} \newlabel{eq:bin_oper_QpR}{{B.7}{169}{Order of Operations, Grouping Symbols, and Precedence:\relax }{equation.351}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.2}Groups, Monoids, and Semigroups}{169}{subsection.352}} \newlabel{item:group_associativity}{{i}{169}{Groups, Monoids, and Semigroups\relax }{Item.353}{}} \newlabel{item:group_identity}{{ii}{169}{Groups, Monoids, and Semigroups\relax }{Item.354}{}} \newlabel{item:group_inverse}{{iii}{169}{Groups, Monoids, and Semigroups\relax }{Item.355}{}} \@writefile{toc}{\contentsline {paragraph}{Trivial Monoids and Semigroups:}{170}{section*.356}} \@writefile{toc}{\contentsline {paragraph}{Monoid Triple Notation:}{170}{section*.357}} \@writefile{toc}{\contentsline {paragraph}{Commutative Semigroups, Monoids, and Groups:}{170}{section*.358}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.3}Rings}{171}{subsection.359}} \@writefile{symbols}{\indexentry{Ageneral.541@[$x + y$] sum of $x$ and $y$~\bhypersym {sym:addition}|nopage}{171}} \newlabel{def:sym:addition}{{B.4.3}{171}{Rings\relax }{subsection.359}{}} \@writefile{symbols}{\indexentry{Ageneral.542@[$x \times y$] product of $x$ and $y$ (also denoted $xy$)~\bhypersym {sym:multiplication}|nopage}{171}} \newlabel{def:sym:multiplication}{{B.4.3}{171}{Rings\relax }{subsection.359}{}} \newlabel{item:ring_addition}{{i}{171}{Rings\relax }{Item.360}{}} \newlabel{item:ring_multiplication}{{ii}{171}{Rings\relax }{Item.361}{}} \newlabel{item:ring_distributivity}{{iii}{171}{Rings\relax }{Item.362}{}} \@writefile{toc}{\contentsline {paragraph}{Additive Inverses and Subtraction:}{171}{section*.363}} \@writefile{symbols}{\indexentry{Ageneral.543@[$-x$] additive inverse of $x$~\bhypersym {sym:addinverse}|nopage}{171}} \newlabel{def:sym:addinverse}{{B.4.3}{171}{Additive Inverses and Subtraction:\relax }{section*.363}{}} \@writefile{symbols}{\indexentry{Ageneral.5431@[$x - y$] difference of $x$ and $y$ (\ie , $x - y \triangleq x + -y$)~\bhypersym {sym:subtraction}|nopage}{171}} \newlabel{def:sym:subtraction}{{B.4.3}{171}{Additive Inverses and Subtraction:\relax }{section*.363}{}} \@writefile{toc}{\contentsline {paragraph}{Multiplicative Inverses, Ratios, and Division:}{172}{section*.364}} \@writefile{toc}{\contentsline {paragraph}{Juxtaposition and Related Notations:}{172}{section*.365}} \@writefile{toc}{\contentsline {paragraph}{Order of Operations:}{172}{section*.366}} \@writefile{toc}{\contentsline {paragraph}{Multiplication by Additive Identity:}{172}{section*.367}} \@writefile{toc}{\contentsline {paragraph}{Commutative Rings:}{172}{section*.368}} \@writefile{toc}{\contentsline {paragraph}{The Zero Ring:}{173}{section*.369}} \@writefile{toc}{\contentsline {paragraph}{Semirings:}{173}{section*.370}} \newlabel{item:semiring_addition}{{i}{173}{Semirings:\relax }{Item.371}{}} \newlabel{item:semiring_multiplication}{{ii}{173}{Semirings:\relax }{Item.372}{}} \newlabel{item:semiring_distributivity}{{iii}{173}{Semirings:\relax }{Item.373}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.4}Fields}{174}{subsection.375}} \newlabel{item:field_not_trivial}{{i}{174}{Fields\relax }{Item.376}{}} \newlabel{item:field_division}{{ii}{174}{Fields\relax }{Item.377}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.5}Subgroups, Subrings, and Subfields}{174}{subsection.378}} \@writefile{toc}{\contentsline {paragraph}{Examples:}{174}{section*.379}} \@writefile{toc}{\contentsline {paragraph}{Other Relevant Substructures:}{175}{section*.380}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.6}Homomorphisms and Homomorphic Structures}{175}{subsection.381}} \newlabel{app:math_homomorphisms}{{B.4.6}{175}{Homomorphisms and Homomorphic Structures\relax }{subsection.381}{}} \@writefile{toc}{\contentsline {paragraph}{Isomorphisms and Isomorphic Structures:}{177}{section*.382}} \citation{Rudin76} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.7}Ordered Rings, Absolute Value, and Ordered Fields}{178}{subsection.383}} \newlabel{app:math_ordered_rings}{{B.4.7}{178}{Ordered Rings, Absolute Value, and Ordered Fields\relax }{subsection.383}{}} \newlabel{item:ordered_ring_add}{{i}{178}{Ordered Rings, Absolute Value, and Ordered Fields\relax }{Item.384}{}} \newlabel{item:ordered_ring_mult}{{ii}{178}{Ordered Rings, Absolute Value, and Ordered Fields\relax }{Item.385}{}} \@writefile{symbols}{\indexentry{Ageneral.5432@[$\sgn (x)$] sign function of $x$~\bhypersym {sym:sgnfn}|nopage}{178}} \newlabel{def:sym:sgnfn}{{B.4.7}{178}{Ordered Rings, Absolute Value, and Ordered Fields\relax }{Item.385}{}} \@writefile{brf}{\backcite{Rudin76}{{178}{B.4.7}{Item.385}}} \@writefile{symbols}{\indexentry{Ageneral.5433@[$\pipe x \pipe $] absolute value of $x$ (\ie , $x = \sgn (x) \pipe x \pipe $)~\bhypersym {sym:absvalue}|nopage}{179}} \newlabel{def:sym:absvalue}{{B.4.7}{179}{Ordered Rings, Absolute Value, and Ordered Fields\relax }{Item.385}{}} \@writefile{toc}{\contentsline {paragraph}{Ordered Fields:}{179}{section*.386}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4.8}Summations and Products of Indexed Families}{179}{subsection.387}} \newlabel{app:math_sumprod_ind_fam}{{B.4.8}{179}{Summations and Products of Indexed Families\relax }{subsection.387}{}} \@writefile{toc}{\contentsline {paragraph}{Finite Summations over Commutative Magmas:}{180}{section*.388}} \@writefile{symbols}{\indexentry{Ageneral.z@[$\sum $] sum of elements of a set~\bhypersym {sym:summation}|nopage}{180}} \newlabel{def:sym:summation}{{B.4.8}{180}{Finite Summations over Commutative Magmas:\relax }{section*.388}{}} \@writefile{toc}{\contentsline {paragraph}{Ordered Summations over General Magmas:}{180}{section*.389}} \@writefile{toc}{\contentsline {paragraph}{Empty Summations over Magmas with Identity:}{181}{section*.390}} \@writefile{toc}{\contentsline {paragraph}{Finite Products over Commutative Magmas:}{181}{section*.391}} \@writefile{symbols}{\indexentry{Ageneral.z@[$\prod $] product of elements of a set~\bhypersym {sym:product}|nopage}{181}} \newlabel{def:sym:product}{{B.4.8}{181}{Finite Products over Commutative Magmas:\relax }{section*.391}{}} \@writefile{toc}{\contentsline {paragraph}{Ordered Products over General Magmas:}{181}{section*.392}} \@writefile{toc}{\contentsline {paragraph}{Empty Products over Magmas with Identity:}{182}{section*.393}} \@writefile{toc}{\contentsline {section}{\numberline {B.5}Linear Algebra: Vector Spaces and Algebras}{182}{section.394}} \newlabel{app:math_linear_algebra}{{B.5}{182}{Linear Algebra: Vector Spaces and Algebras\relax }{section.394}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.5.1}Vector Spaces}{182}{subsection.395}} \newlabel{app:math_vector_space}{{B.5.1}{182}{Vector Spaces\relax }{subsection.395}{}} \@writefile{toc}{\contentsline {paragraph}{Operator Notation:}{183}{section*.400}} \@writefile{toc}{\contentsline {paragraph}{Vector Subspaces:}{184}{section*.401}} \newlabel{item:vector_subspace_addition}{{ii}{184}{Vector Subspaces:\relax }{Item.403}{}} \newlabel{item:vector_subspace_identity}{{iii}{184}{Vector Subspaces:\relax }{Item.404}{}} \@writefile{toc}{\contentsline {paragraph}{Interpretation:}{184}{section*.405}} \@writefile{toc}{\contentsline {paragraph}{Fields as Vector Spaces:}{185}{section*.406}} \@writefile{toc}{\contentsline {paragraph}{Vector Spaces over Commutative Rings:}{185}{section*.407}} \@writefile{toc}{\contentsline {paragraph}{Commutative Rings as Vector Spaces:}{185}{section*.408}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.5.2}Linear and Bilinear Functions}{185}{subsection.409}} \newlabel{app:math_linear_operator}{{B.5.2}{185}{Linear and Bilinear Functions\relax }{subsection.409}{}} \@writefile{toc}{\contentsline {paragraph}{Bilinear Functions:}{186}{section*.412}} \newlabel{item:bilinear_first_argument}{{i}{186}{Bilinear Functions:\relax }{Item.413}{}} \newlabel{item:bilinear_second_argument}{{ii}{186}{Bilinear Functions:\relax }{Item.414}{}} \newlabel{eq:bilinear_faux_associative}{{B.8}{186}{Bilinear Functions:\relax }{equation.415}{}} \@writefile{toc}{\contentsline {paragraph}{Bilinear Operators:}{186}{section*.416}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.5.3}Algebra over a Field}{187}{subsection.417}} \newlabel{app:math_algebra_over_a_field}{{B.5.3}{187}{Algebra over a Field\relax }{subsection.417}{}} \newlabel{item:vector_vector_mult}{{i}{187}{Algebra over a Field\relax }{Item.418}{}} \newlabel{item:scalar_vector_mult}{{ii}{188}{Algebra over a Field\relax }{Item.419}{}} \newlabel{item:scalar_mult}{{iii}{188}{Algebra over a Field\relax }{Item.420}{}} \citation{Stoll79} \@writefile{toc}{\contentsline {paragraph}{Associative Algebras:}{189}{section*.421}} \@writefile{toc}{\contentsline {paragraph}{Unitary Associative Algebras:}{189}{section*.422}} \@writefile{toc}{\contentsline {paragraph}{Algebras over Commutative Rings:}{189}{section*.423}} \@writefile{toc}{\contentsline {paragraph}{Fields as Algebras:}{189}{section*.424}} \@writefile{toc}{\contentsline {paragraph}{Commutative Rings as Algebras:}{189}{section*.425}} \@writefile{toc}{\contentsline {section}{\numberline {B.6}Boolean Rings and Algebras}{190}{section.426}} \newlabel{app:math_boolean_rings_and_algebras}{{B.6}{190}{Boolean Rings and Algebras\relax }{section.426}{}} \@writefile{brf}{\backcite{Stoll79}{{190}{B.6}{section.426}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.1}Boolean Rings}{190}{subsection.427}} \newlabel{app:math_boolean_rings}{{B.6.1}{190}{Boolean Rings\relax }{subsection.427}{}} \@writefile{toc}{\contentsline {paragraph}{Boolean Rings as Commutative Rings:}{190}{section*.428}} \newlabel{eq:boolean_ring_xplusx}{{B.9}{191}{Boolean Rings as Commutative Rings:\relax }{equation.429}{}} \@writefile{toc}{\contentsline {paragraph}{Boolean Rings as Algebras:}{192}{section*.430}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.2}Boolean Algebra}{192}{subsection.431}} \newlabel{app:math_boolean_algebra}{{B.6.2}{192}{Boolean Algebra\relax }{subsection.431}{}} \@writefile{toc}{\contentsline {paragraph}{Properties of Boolean Algebras:}{193}{section*.437}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra Ordering:}{194}{section*.438}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.3}Boolean Rings as Boolean Algebras}{196}{subsection.439}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.4}Boolean Algebras as Boolean Rings}{197}{subsection.440}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra as Commutative Group:}{197}{section*.441}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra as Commutative Monoid:}{198}{section*.442}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra as Commutative Ring:}{198}{section*.443}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra as Boolean Ring:}{198}{section*.444}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.5}Equivalence of Boolean Algebras and Boolean Rings}{199}{subsection.445}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.6}Subalgebras of Boolean Algebras}{199}{subsection.446}} \newlabel{app:math_boolean_subalgebras}{{B.6.6}{199}{Subalgebras of Boolean Algebras\relax }{subsection.446}{}} \@writefile{toc}{\contentsline {paragraph}{Requirements for a Subalgebra:}{199}{section*.447}} \newlabel{item:boolean_algebra_closure_and}{{i}{199}{Requirements for a Subalgebra:\relax }{Item.448}{}} \newlabel{item:boolean_algebra_closure_or}{{ii}{199}{Requirements for a Subalgebra:\relax }{Item.449}{}} \newlabel{item:boolean_algebra_closure_not}{{iii}{199}{Requirements for a Subalgebra:\relax }{Item.450}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6.7}Propositional Logic and the Trivial Boolean Algebra}{200}{subsection.451}} \newlabel{app:math_prop_logic_boolean_algebra}{{B.6.7}{200}{Propositional Logic and the Trivial Boolean Algebra\relax }{subsection.451}{}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra Ordering and Logical Implication:}{201}{section*.452}} \@writefile{toc}{\contentsline {paragraph}{Boolean Algebra and the Exclusive Or:}{202}{section*.453}} \@writefile{toc}{\contentsline {section}{\numberline {B.7}Sets of Sets: Order and Algebra}{202}{section.454}} \newlabel{app:math_sets_sets}{{B.7}{202}{Sets of Sets: Order and Algebra\relax }{section.454}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.7.1}The Partially Ordered and Complete Power Set}{203}{subsection.455}} \newlabel{app:math_poset_powerset}{{B.7.1}{203}{The Partially Ordered and Complete Power Set\relax }{subsection.455}{}} \@writefile{toc}{\contentsline {paragraph}{Power Set as Poset:}{203}{section*.456}} \@writefile{toc}{\contentsline {paragraph}{Power Set as Complete Lattice:}{204}{section*.457}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.7.2}General Sets of Subsets as Complete Lattices}{205}{subsection.458}} \newlabel{app:math_sets_of_subsets_lattices}{{B.7.2}{205}{General Sets of Subsets as Complete Lattices\relax }{subsection.458}{}} \newlabel{item:subposet}{{i}{205}{General Sets of Subsets as Complete Lattices\relax }{Item.459}{}} \newlabel{item:closure_under_meets_and_joins}{{ii}{205}{General Sets of Subsets as Complete Lattices\relax }{Item.460}{}} \@writefile{toc}{\contentsline {paragraph}{Closure Implies Poset:}{206}{section*.461}} \@writefile{toc}{\contentsline {paragraph}{Closure Implies Complete Lattice:}{206}{section*.462}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.7.3}Filters on Sets}{207}{subsection.463}} \newlabel{app:math_filters_on_sets}{{B.7.3}{207}{Filters on Sets\relax }{subsection.463}{}} \@writefile{toc}{\contentsline {paragraph}{Filter Bases:}{207}{section*.464}} \@writefile{toc}{\contentsline {paragraph}{Filters:}{208}{section*.467}} \@writefile{toc}{\contentsline {paragraph}{Filters from Filter Bases:}{209}{section*.472}} \@writefile{toc}{\contentsline {paragraph}{Filter Base Refinements:}{209}{section*.473}} \@writefile{toc}{\contentsline {paragraph}{Equivalent Filter Bases:}{209}{section*.474}} \@writefile{toc}{\contentsline {paragraph}{Functions of Filter Bases:}{209}{section*.475}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.7.4}Nets and Sequences as Filters}{210}{subsection.476}} \newlabel{app:math_nets_and_sequences_as_filters}{{B.7.4}{210}{Nets and Sequences as Filters\relax }{subsection.476}{}} \@writefile{toc}{\contentsline {paragraph}{Filter Bases Generated by Nets:}{210}{section*.477}} \@writefile{toc}{\contentsline {paragraph}{Filter Bases Generated by Sequences:}{210}{section*.478}} \@writefile{toc}{\contentsline {paragraph}{Filters as General Framework:}{210}{section*.479}} \@writefile{toc}{\contentsline {paragraph}{Nets as Functions:}{211}{section*.480}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.7.5}Algebras, Subalgebras, and Fields of Sets}{212}{subsection.481}} \newlabel{app:math_algebras_of_sets}{{B.7.5}{212}{Algebras, Subalgebras, and Fields of Sets\relax }{subsection.481}{}} \@writefile{toc}{\contentsline {paragraph}{Subalgebras as Fields of Sets:}{213}{section*.482}} \newlabel{item:boolean_algebra_closure_intersection}{{i}{213}{Subalgebras as Fields of Sets:\relax }{Item.483}{}} \newlabel{item:boolean_algebra_closure_union}{{ii}{213}{Subalgebras as Fields of Sets:\relax }{Item.484}{}} \newlabel{item:boolean_algebra_closure_complement}{{iii}{213}{Subalgebras as Fields of Sets:\relax }{Item.485}{}} \citation{Stoll79} \@writefile{toc}{\contentsline {section}{\numberline {B.8}The Numbers}{214}{section.486}} \newlabel{app:math_numbers}{{B.8}{214}{The Numbers\relax }{section.486}{}} \@writefile{brf}{\backcite{Stoll79}{{214}{B.8}{section.486}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.1}Whole Numbers}{214}{subsection.487}} \newlabel{app:math_whole_numbers}{{B.8.1}{214}{Whole Numbers\relax }{subsection.487}{}} \@writefile{toc}{\contentsline {paragraph}{Definition:}{214}{section*.488}} \@writefile{symbols}{\indexentry{Bnumbers.2@[$\W $] the set of the whole numbers (\ie , $\{0,1,2,3,\dots \}$)~\bhypersym {sym:wholes}|nopage}{214}} \newlabel{def:sym:wholes}{{B.8.1}{214}{Definition:\relax }{section*.488}{}} \@writefile{symbols}{\indexentry{Bnumbers.1@[$\N $] the set of the natural numbers (\ie , $\{1,2,3,\dots \}$)~\bhypersym {sym:naturals}|nopage}{215}} \newlabel{def:sym:naturals}{{B.8.1}{215}{Definition:\relax }{section*.488}{}} \newlabel{eq:whole_number_subseteq_order}{{B.10}{215}{Definition:\relax }{equation.489}{}} \newlabel{eq:whole_number_subset_order}{{B.11}{215}{Definition:\relax }{equation.490}{}} \@writefile{toc}{\contentsline {paragraph}{Successor Function:}{215}{section*.491}} \@writefile{toc}{\contentsline {paragraph}{Addition:}{216}{section*.492}} \@writefile{toc}{\contentsline {paragraph}{Multiplication:}{216}{section*.493}} \@writefile{toc}{\contentsline {paragraph}{Exponentiation:}{218}{section*.494}} \@writefile{toc}{\contentsline {paragraph}{Even and Odd Whole Numbers:}{219}{section*.495}} \@writefile{toc}{\contentsline {paragraph}{Total Ordering:}{220}{section*.496}} \@writefile{toc}{\contentsline {paragraph}{Lack of Dense Ordering:}{221}{section*.497}} \@writefile{toc}{\contentsline {paragraph}{Gaplessness:}{221}{section*.498}} \@writefile{toc}{\contentsline {paragraph}{Existence of Minima and Maxima:}{221}{section*.499}} \@writefile{toc}{\contentsline {paragraph}{Cardinal Arithmetic:}{222}{section*.500}} \@writefile{toc}{\contentsline {paragraph}{Algebraic Structure of the Whole Numbers:}{223}{section*.501}} \@writefile{toc}{\contentsline {paragraph}{Algebraic Structure of the Natural Numbers:}{224}{section*.502}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.2}Integers}{225}{subsection.503}} \@writefile{toc}{\contentsline {paragraph}{Definition:}{225}{section*.504}} \newlabel{eq:integer_equivalence_relation}{{B.12}{225}{Definition:\relax }{equation.505}{}} \@writefile{symbols}{\indexentry{Bnumbers.3@[$\Z $] the set of the integers (\ie , $\{\dots ,-3,-2,-1,0,1,2,3,\dots \}$)~\bhypersym {sym:integers}|nopage}{225}} \newlabel{def:sym:integers}{{B.8.2}{225}{Definition:\relax }{equation.505}{}} \@writefile{toc}{\contentsline {paragraph}{Symbols:}{225}{section*.506}} \newlabel{eq:integers_with_stars}{{B.13}{227}{Symbols:\relax }{equation.507}{}} \newlabel{eq:integers_with_symbols}{{B.14}{227}{Symbols:\relax }{equation.508}{}} \@writefile{toc}{\contentsline {paragraph}{Countability:}{227}{section*.509}} \@writefile{lot}{\contentsline {table}{\numberline {B.1}{\ignorespaces Integers listed alongside natural numbers.}}{227}{table.510}} \newlabel{tab:integers_and_naturals}{{B.1}{227}{Integers listed alongside natural numbers}{table.510}{}} \@writefile{toc}{\contentsline {paragraph}{Total Ordering:}{228}{section*.511}} \@writefile{toc}{\contentsline {paragraph}{Lack of Dense Ordering:}{229}{section*.512}} \@writefile{toc}{\contentsline {paragraph}{Gaplessness:}{229}{section*.513}} \@writefile{toc}{\contentsline {paragraph}{Existence of Minima and Maxima:}{229}{section*.514}} \@writefile{toc}{\contentsline {paragraph}{Addition:}{229}{section*.515}} \@writefile{toc}{\contentsline {paragraph}{Subtraction:}{232}{section*.516}} \@writefile{toc}{\contentsline {paragraph}{Multiplication:}{233}{section*.517}} \@writefile{toc}{\contentsline {paragraph}{Multiplication Notables:}{235}{section*.518}} \@writefile{toc}{\contentsline {paragraph}{Subtraction:}{236}{section*.519}} \@writefile{toc}{\contentsline {paragraph}{Absolute Value and Signum:}{237}{section*.520}} \@writefile{toc}{\contentsline {paragraph}{Exponentiation:}{238}{section*.521}} \@writefile{toc}{\contentsline {paragraph}{Even and Odd Integers:}{238}{section*.522}} \@writefile{toc}{\contentsline {paragraph}{Algebraic Structure of the Integers:}{239}{section*.523}} \@writefile{toc}{\contentsline {paragraph}{Relationship to Whole Numbers:}{240}{section*.524}} \newlabel{item:integer_whole_ordering}{{i}{241}{Relationship to Whole Numbers:\relax }{Item.525}{}} \newlabel{item:integer_whole_ring_homomorphism_plus}{{ii}{241}{Relationship to Whole Numbers:\relax }{Item.526}{}} \newlabel{item:integer_whole_ring_homomorphism_times}{{iii}{241}{Relationship to Whole Numbers:\relax }{Item.527}{}} \newlabel{item:integer_whole_ring_homomorphism_m_identity}{{iv}{241}{Relationship to Whole Numbers:\relax }{Item.528}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.3}Rational Numbers}{242}{subsection.529}} \@writefile{toc}{\contentsline {paragraph}{Definition:}{243}{section*.530}} \newlabel{eq:rational_equivalence_relation}{{B.15}{243}{Definition:\relax }{equation.531}{}} \@writefile{symbols}{\indexentry{Bnumbers.4@[$\Q $] the set of the rationals (\ie , ratios of integers)~\bhypersym {sym:rationals}|nopage}{243}} \newlabel{def:sym:rationals}{{B.8.3}{243}{Definition:\relax }{equation.531}{}} \@writefile{toc}{\contentsline {paragraph}{Countability:}{244}{section*.532}} \@writefile{lot}{\contentsline {table}{\numberline {B.2}{\ignorespaces Motivation for rational number and natural number bijection}}{245}{table.533}} \newlabel{tab:motiv_rationals_and_naturals}{{B.2}{245}{Motivation for rational number and natural number bijection\relax }{table.533}{}} \@writefile{lot}{\contentsline {table}{\numberline {B.3}{\ignorespaces More motivation for rational number and natural number bijection}}{245}{table.534}} \newlabel{tab:motiv_rationals_and_naturals_2}{{B.3}{245}{More motivation for rational number and natural number bijection\relax }{table.534}{}} \@writefile{lot}{\contentsline {table}{\numberline {B.4}{\ignorespaces The rational number to natural number bijection}}{246}{table.535}} \newlabel{tab:rationals_and_naturals}{{B.4}{246}{The rational number to natural number bijection\relax }{table.535}{}} \@writefile{toc}{\contentsline {paragraph}{Symbols:}{246}{section*.536}} \@writefile{toc}{\contentsline {paragraph}{Total Ordering:}{247}{section*.537}} \@writefile{toc}{\contentsline {paragraph}{Dense Ordering:}{248}{section*.538}} \@writefile{toc}{\contentsline {paragraph}{Lack of Gaplessness:}{248}{section*.539}} \@writefile{toc}{\contentsline {paragraph}{Lack of Certain Existence of Minima and Maxima:}{248}{section*.540}} \@writefile{toc}{\contentsline {paragraph}{Addition:}{249}{section*.541}} \@writefile{toc}{\contentsline {paragraph}{Additive Inverses:}{250}{section*.542}} \@writefile{toc}{\contentsline {paragraph}{Multiplication:}{250}{section*.543}} \@writefile{toc}{\contentsline {paragraph}{Multiplicative Inverses:}{251}{section*.544}} \@writefile{toc}{\contentsline {paragraph}{Subtraction:}{252}{section*.545}} \@writefile{toc}{\contentsline {paragraph}{Division:}{252}{section*.546}} \@writefile{toc}{\contentsline {paragraph}{Exponentiation:}{254}{section*.547}} \@writefile{toc}{\contentsline {paragraph}{Roots:}{255}{section*.548}} \@writefile{toc}{\contentsline {paragraph}{Ratios of Even Integers:}{255}{section*.549}} \@writefile{toc}{\contentsline {paragraph}{Base-10 (Decimal) Notation:}{256}{section*.550}} \@writefile{toc}{\contentsline {paragraph}{Absolute Value and Signum:}{256}{section*.551}} \@writefile{toc}{\contentsline {paragraph}{Algebraic Structure of the Rationals:}{257}{section*.552}} \@writefile{toc}{\contentsline {paragraph}{Relationship to Integers:}{259}{section*.553}} \newlabel{item:rational_integer_ordering}{{i}{260}{Relationship to Integers:\relax }{Item.554}{}} \newlabel{item:rational_integer_ring_homomorphism_plus}{{ii}{260}{Relationship to Integers:\relax }{Item.555}{}} \newlabel{item:rational_integer_ring_homomorphism_times}{{iii}{260}{Relationship to Integers:\relax }{Item.556}{}} \newlabel{item:rational_integer_ring_homomorphism_m_identity}{{iv}{260}{Relationship to Integers:\relax }{Item.557}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.4}Ordering Issues with the Countable Numbers}{261}{subsection.558}} \newlabel{app:math_ordering_issues}{{B.8.4}{261}{Ordering Issues with the Countable Numbers\relax }{subsection.558}{}} \citation{Rudin76} \@writefile{toc}{\contentsline {paragraph}{Example of Existence of Bounds:}{262}{section*.559}} \@writefile{toc}{\contentsline {paragraph}{Example of Nonexistence of Bounds:}{262}{section*.560}} \@writefile{brf}{\backcite{Rudin76}{{262}{B.8.4}{section*.560}}} \newlabel{eq:def_r_one}{{B.16}{263}{Example of Nonexistence of Bounds:\relax }{equation.561}{}} \newlabel{eq:def_r_two}{{B.17}{263}{Example of Nonexistence of Bounds:\relax }{equation.562}{}} \newlabel{eq:def_r_three}{{B.18}{263}{Example of Nonexistence of Bounds:\relax }{equation.563}{}} \newlabel{eq:def_r2}{{B.19}{263}{Example of Nonexistence of Bounds:\relax }{equation.564}{}} \@writefile{toc}{\contentsline {paragraph}{Gaps in Rational Numbers:}{263}{section*.565}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.5}Countability and Order: Gaplessness and Dense Ordering}{264}{subsection.566}} \newlabel{app:math_countability_and_order}{{B.8.5}{264}{Countability and Order: Gaplessness and Dense Ordering\relax }{subsection.566}{}} \@writefile{toc}{\contentsline {paragraph}{Lemma:}{264}{section*.567}} \@writefile{toc}{\contentsline {paragraph}{Theorem:}{264}{section*.568}} \newlabel{item:countability_two_elements}{{i}{264}{Theorem:\relax }{Item.569}{}} \newlabel{item:countability_densely_ordered}{{ii}{264}{Theorem:\relax }{Item.570}{}} \newlabel{item:countability_gapless}{{iii}{264}{Theorem:\relax }{Item.571}{}} \@writefile{toc}{\contentsline {paragraph}{Proof of Theorem:}{265}{section*.572}} \@writefile{lof}{\contentsline {figure}{\numberline {B.4}{\ignorespaces Nested Intervals of a Countable Densely Ordered Set}}{266}{figure.573}} \newlabel{fig:countable_intervals}{{B.4}{266}{Nested Intervals of a Countable Densely Ordered Set\relax }{figure.573}{}} \newlabel{eq:uncountable_proof_contradiction}{{B.20}{266}{Proof of Theorem:\relax }{equation.574}{}} \citation{Rudin76} \citation{Stoll79} \citation{Rudin76} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.6}The Real Numbers}{267}{subsection.575}} \newlabel{app:math_reals}{{B.8.6}{267}{The Real Numbers\relax }{subsection.575}{}} \@writefile{toc}{\contentsline {paragraph}{Definition:}{267}{section*.576}} \@writefile{brf}{\backcite{Rudin76}{{267}{B.8.6}{section*.576}}} \@writefile{brf}{\backcite{Stoll79}{{267}{B.8.6}{section*.576}}} \@writefile{brf}{\backcite{Rudin76}{{267}{B.8.6}{section*.576}}} \newlabel{item:real_proper}{{i}{268}{Definition:\relax }{Item.577}{}} \newlabel{item:real_member}{{ii}{268}{Definition:\relax }{Item.578}{}} \newlabel{item:real_nonmember}{{iii}{268}{Definition:\relax }{Item.579}{}} \@writefile{symbols}{\indexentry{Bnumbers.50@[$\R $] the set of the real numbers~\bhypersym {sym:reals}|nopage}{268}} \newlabel{def:sym:reals}{{B.8.6}{268}{Definition:\relax }{Item.579}{}} \@writefile{toc}{\contentsline {paragraph}{Symbols:}{268}{section*.580}} \@writefile{toc}{\contentsline {paragraph}{Total Ordering:}{270}{section*.581}} \@writefile{toc}{\contentsline {paragraph}{Special Subsets of the Reals:}{270}{section*.582}} \@writefile{symbols}{\indexentry{Bnumbers.510@[$\R _{>0}$] the set of the strictly positive real numbers~\bhypersym {sym:realsg0}|nopage}{270}} \newlabel{def:sym:realsg0}{{B.8.6}{270}{Special Subsets of the Reals:\relax }{section*.582}{}} \@writefile{symbols}{\indexentry{Bnumbers.511@[$\R _{\geq 0}$] the set of the non-negative real numbers~\bhypersym {sym:realsgeq0}|nopage}{271}} \newlabel{def:sym:realsgeq0}{{B.8.6}{271}{Special Subsets of the Reals:\relax }{section*.582}{}} \@writefile{symbols}{\indexentry{Bnumbers.520@[$\R _{<0}$] the set of the strictly negative real numbers~\bhypersym {sym:realsl0}|nopage}{271}} \newlabel{def:sym:realsl0}{{B.8.6}{271}{Special Subsets of the Reals:\relax }{section*.582}{}} \@writefile{symbols}{\indexentry{Bnumbers.521@[$\R _{\leq 0}$] the set of the non-positive real numbers~\bhypersym {sym:realsleq0}|nopage}{271}} \newlabel{def:sym:realsleq0}{{B.8.6}{271}{Special Subsets of the Reals:\relax }{section*.582}{}} \@writefile{symbols}{\indexentry{Bnumbers.53@[$\R _{\neq 0}$] the set of the non-zero real numbers~\bhypersym {sym:realsneq0}|nopage}{271}} \newlabel{def:sym:realsneq0}{{B.8.6}{271}{Special Subsets of the Reals:\relax }{section*.582}{}} \@writefile{toc}{\contentsline {paragraph}{Dense Ordering:}{272}{section*.583}} \@writefile{toc}{\contentsline {paragraph}{Gaplessness:}{272}{section*.584}} \@writefile{toc}{\contentsline {paragraph}{Countability:}{272}{section*.585}} \@writefile{toc}{\contentsline {paragraph}{Addition:}{273}{section*.586}} \@writefile{toc}{\contentsline {paragraph}{Additive Inverses:}{273}{section*.587}} \@writefile{toc}{\contentsline {paragraph}{Subtraction:}{274}{section*.588}} \@writefile{toc}{\contentsline {paragraph}{Multiplication:}{274}{section*.589}} \@writefile{toc}{\contentsline {paragraph}{Multiplicative Inverses:}{275}{section*.590}} \@writefile{toc}{\contentsline {paragraph}{Division:}{275}{section*.591}} \@writefile{toc}{\contentsline {paragraph}{Exponentiation:}{275}{section*.592}} \@writefile{toc}{\contentsline {paragraph}{Roots:}{277}{section*.593}} \@writefile{toc}{\contentsline {paragraph}{Absolute Value and Signum:}{277}{section*.594}} \@writefile{toc}{\contentsline {paragraph}{Algebraic Structure of the Reals:}{278}{section*.595}} \@writefile{toc}{\contentsline {paragraph}{Relationship to Rational Numbers:}{279}{section*.596}} \newlabel{item:real_rational_ordering}{{i}{280}{Relationship to Rational Numbers:\relax }{Item.597}{}} \newlabel{item:real_rational_field_homomorphism_plus}{{ii}{280}{Relationship to Rational Numbers:\relax }{Item.598}{}} \newlabel{item:real_rational_field_homomorphism_times}{{iii}{280}{Relationship to Rational Numbers:\relax }{Item.599}{}} \newlabel{item:real_rational_field_homomorphism_m_identity}{{iv}{280}{Relationship to Rational Numbers:\relax }{Item.600}{}} \@writefile{toc}{\contentsline {paragraph}{Ceiling and Floor:}{281}{section*.601}} \@writefile{symbols}{\indexentry{Bnumbers.61@[$\lfloor x \rfloor $] the floor of real number $x$ (\ie , the greatest integer not greater than $x$)~\bhypersym {sym:floor}|nopage}{281}} \newlabel{def:sym:floor}{{B.8.6}{281}{Ceiling and Floor:\relax }{section*.601}{}} \@writefile{symbols}{\indexentry{Bnumbers.60@[$\lceil x \rceil $] the ceiling of real number $x$ (\ie , the least integer not less than $x$)~\bhypersym {sym:ceiling}|nopage}{282}} \newlabel{def:sym:ceiling}{{B.8.6}{282}{Ceiling and Floor:\relax }{section*.601}{}} \@writefile{toc}{\contentsline {paragraph}{Base-10 (Decimal) Notation:}{282}{section*.602}} \@writefile{toc}{\contentsline {paragraph}{Cardinality and a Continuum:}{283}{section*.603}} \citation{Rudin76} \@writefile{toc}{\contentsline {paragraph}{Bounded Intervals of Real Numbers and Compact Sets:}{284}{section*.604}} \@writefile{brf}{\backcite{Rudin76}{{284}{B.8.6}{section*.604}}} \@writefile{toc}{\contentsline {paragraph}{Unbounded Intervals of Real Numbers:}{285}{section*.605}} \@writefile{toc}{\contentsline {paragraph}{Real Functions:}{285}{section*.606}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.8.7}The Extended Real Numbers}{285}{subsection.607}} \newlabel{app:math_ext_reals}{{B.8.7}{285}{The Extended Real Numbers\relax }{subsection.607}{}} \@writefile{symbols}{\indexentry{Bnumbers.54@[$\extR $] the set of the extended real numbers (\ie , $\R \cup \{-\infty ,+\infty \}$)~\bhypersym {sym:extreals}|nopage}{285}} \newlabel{def:sym:extreals}{{B.8.7}{285}{The Extended Real Numbers\relax }{subsection.607}{}} \@writefile{toc}{\contentsline {paragraph}{Finite Numbers:}{285}{section*.608}} \@writefile{toc}{\contentsline {paragraph}{Ordering:}{285}{section*.609}} \@writefile{toc}{\contentsline {paragraph}{Upper and Lower Bounds:}{286}{section*.610}} \@writefile{toc}{\contentsline {paragraph}{Arithmetic:}{286}{section*.611}} \@writefile{toc}{\contentsline {paragraph}{Algebraic Structure of the Extended Reals:}{287}{section*.615}} \@writefile{toc}{\contentsline {paragraph}{Completeness:}{287}{section*.616}} \@writefile{toc}{\contentsline {paragraph}{Intervals of Extended Real Numbers and Compactness:}{287}{section*.617}} \@writefile{toc}{\contentsline {paragraph}{Real Functions as Extended Real Functions:}{288}{section*.618}} \@writefile{toc}{\contentsline {section}{\numberline {B.9}Basic Topology}{288}{section.619}} \newlabel{app:math_topology}{{B.9}{288}{Basic Topology\relax }{section.619}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.9.1}The Topological Space}{289}{subsection.620}} \newlabel{app:math_topological_spaces}{{B.9.1}{289}{The Topological Space\relax }{subsection.620}{}} \@writefile{toc}{\contentsline {paragraph}{Open Sets and Neighborhoods:}{289}{section*.624}} \@writefile{symbols}{\indexentry{Ganalysis.0001@[$\nhd _x$] neighborhood system of $x$ (\ie , set of all topological neighborhoods of $x$)~\bhypersym {sym:nhd}|nopage}{290}} \newlabel{def:sym:nhd}{{B.9.1}{290}{Open Sets and Neighborhoods:\relax }{section*.624}{}} \@writefile{toc}{\contentsline {paragraph}{Points and Sets:}{291}{section*.625}} \@writefile{toc}{\contentsline {paragraph}{Some Useful Results:}{292}{section*.626}} \@writefile{toc}{\contentsline {paragraph}{Compactness and Compact Sets:}{295}{section*.627}} \@writefile{toc}{\contentsline {paragraph}{First-Countable Spaces:}{295}{section*.628}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.9.2}Limits of Sets}{296}{subsection.629}} \newlabel{app:math_topology_set_limits}{{B.9.2}{296}{Limits of Sets\relax }{subsection.629}{}} \@writefile{toc}{\contentsline {paragraph}{Limit Inferior and Limit Superior of a Set:}{296}{section*.630}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.9.3}Convergence of a Filter Base}{297}{subsection.631}} \@writefile{toc}{\contentsline {paragraph}{Limit Points of Filter Bases:}{297}{section*.632}} \@writefile{symbols}{\indexentry{Ganalysis.120@[$\to $] a limit~\bhypersym {sym:limarrow}|nopage}{297}} \newlabel{def:sym:limarrow}{{B.9.3}{297}{Limit Points of Filter Bases:\relax }{section*.632}{}} \@writefile{symbols}{\indexentry{Ganalysis.1201@[$\setset {B} \to p$] filter base $\setset {B}$ converges to $p$~\bhypersym {sym:limfb}|nopage}{297}} \newlabel{def:sym:limfb}{{B.9.3}{297}{Limit Points of Filter Bases:\relax }{section*.632}{}} \@writefile{toc}{\contentsline {paragraph}{Convergence in Hausdorff Spaces:}{297}{section*.633}} \newlabel{item:Hausdorff_unique_limits}{{i}{298}{Convergence in Hausdorff Spaces:\relax }{Item.634}{}} \newlabel{item:Hausdorff_separated}{{ii}{298}{Convergence in Hausdorff Spaces:\relax }{Item.635}{}} \@writefile{symbols}{\indexentry{Ganalysis.10@[$\lim $] limit (\eg , unique limit of filter base, function, net, or sequence)~\bhypersym {sym:lim}|nopage}{298}} \newlabel{def:sym:lim}{{B.9.3}{298}{Convergence in Hausdorff Spaces:\relax }{Item.635}{}} \@writefile{toc}{\contentsline {paragraph}{Cluster Points of Filter Bases:}{298}{section*.636}} \@writefile{toc}{\contentsline {paragraph}{Limit Points as Cluster Points:}{298}{section*.637}} \@writefile{toc}{\contentsline {paragraph}{Filter Bases on Subsets:}{299}{section*.638}} \newlabel{item:base_on_E_on_E}{{i}{299}{Filter Bases on Subsets:\relax }{Item.639}{}} \newlabel{item:base_on_E_base}{{ii}{299}{Filter Bases on Subsets:\relax }{Item.640}{}} \@writefile{toc}{\contentsline {paragraph}{Filter Base Cluster Points as Set Closure Points:}{300}{section*.641}} \@writefile{toc}{\contentsline {paragraph}{Some Useful Results:}{300}{section*.644}} \@writefile{toc}{\contentsline {paragraph}{Set Limit Points and Filter Base Limit Points:}{301}{section*.645}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.9.4}The Limit Inferior and Limit Superior}{301}{subsection.646}} \newlabel{app:math_liminf_limsup_fb}{{B.9.4}{301}{The Limit Inferior and Limit Superior\relax }{subsection.646}{}} \@writefile{toc}{\contentsline {paragraph}{The Limit Inferior of a Filter Base:}{302}{section*.647}} \@writefile{symbols}{\indexentry{Ganalysis.11@[$\liminf $] limit inferior (\ie , $\sup \inf $)~\bhypersym {sym:liminf}|nopage}{302}} \newlabel{def:sym:liminf}{{B.9.4}{302}{The Limit Inferior of a Filter Base:\relax }{section*.647}{}} \@writefile{toc}{\contentsline {paragraph}{The Limit Superior of a Filter Base:}{302}{section*.648}} \@writefile{symbols}{\indexentry{Ganalysis.11@[$\limsup $] limit superior (\ie , $\inf \sup $)~\bhypersym {sym:limsup}|nopage}{302}} \newlabel{def:sym:limsup}{{B.9.4}{302}{The Limit Superior of a Filter Base:\relax }{section*.648}{}} \@writefile{toc}{\contentsline {paragraph}{Agreement of Limit Inferior and Limit Superior:}{303}{section*.649}} \@writefile{toc}{\contentsline {section}{\numberline {B.10}Metric Spaces and Numerical Topology}{303}{section.650}} \newlabel{app:math_metric_spaces}{{B.10}{303}{Metric Spaces and Numerical Topology\relax }{section.650}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.10.1}The Metric Space}{304}{subsection.651}} \newlabel{app:math_metric_space_specification}{{B.10.1}{304}{The Metric Space\relax }{subsection.651}{}} \newlabel{item:metric_triangle_inequality}{{iv}{304}{The Metric Space\relax }{Item.655}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.10.2}Metric Space as Topological Space}{304}{subsection.656}} \newlabel{app:math_metric_space_as_topological_space}{{B.10.2}{304}{Metric Space as Topological Space\relax }{subsection.656}{}} \@writefile{toc}{\contentsline {paragraph}{Open and Closed Balls:}{305}{section*.657}} \@writefile{symbols}{\indexentry{Ganalysis.00000@[$B(x;r)$] open metric ball of radius $r$ centered at $x$~\bhypersym {sym:openball}|nopage}{305}} \newlabel{def:sym:openball}{{B.10.2}{305}{Open and Closed Balls:\relax }{section*.657}{}} \@writefile{symbols}{\indexentry{Ganalysis.00001@[${B[x;r]}$] closed metric ball of radius $r$ centered at $x$~\bhypersym {sym:closedball}|nopage}{305}} \newlabel{def:sym:closedball}{{B.10.2}{305}{Open and Closed Balls:\relax }{section*.657}{}} \@writefile{toc}{\contentsline {paragraph}{Metrically Open Sets:}{305}{section*.658}} \@writefile{toc}{\contentsline {paragraph}{Definition of Topology on a Metric Space:}{305}{section*.659}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.10.3}Definitions and Notation}{306}{subsection.660}} \newlabel{app:math_metric_space_definitions}{{B.10.3}{306}{Definitions and Notation\relax }{subsection.660}{}} \@writefile{toc}{\contentsline {paragraph}{Open Sets and Neighborhoods:}{306}{section*.661}} \@writefile{toc}{\contentsline {paragraph}{Points and Sets:}{308}{section*.662}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.10.4}Important Metric Space Results}{310}{subsection.663}} \newlabel{app:important_metric_results}{{B.10.4}{310}{Important Metric Space Results\relax }{subsection.663}{}} \@writefile{toc}{\contentsline {paragraph}{Open Balls as Open Sets:}{310}{section*.664}} \@writefile{toc}{\contentsline {paragraph}{Cascades of Open Balls:}{310}{section*.665}} \@writefile{toc}{\contentsline {paragraph}{Metric Spaces as Hausdorff Topological Spaces:}{310}{section*.666}} \newlabel{eq:metric_hausdorff_proof}{{B.21}{311}{Metric Spaces as Hausdorff Topological Spaces:\relax }{equation.667}{}} \@writefile{toc}{\contentsline {paragraph}{Metric Spaces as First-Countable Spaces:}{312}{section*.668}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.10.5}Real Numbers as Metric Spaces}{312}{subsection.669}} \newlabel{app:math_real_numbers_as_metric_spaces}{{B.10.5}{312}{Real Numbers as Metric Spaces\relax }{subsection.669}{}} \@writefile{toc}{\contentsline {paragraph}{Open and Closed Balls:}{312}{section*.670}} \@writefile{toc}{\contentsline {paragraph}{Open Intervals as Neighborhoods:}{313}{section*.671}} \@writefile{toc}{\contentsline {paragraph}{Intervals as Open and Closed Sets:}{313}{section*.672}} \@writefile{toc}{\contentsline {paragraph}{Not All Closed Sets Are Bounded:}{313}{section*.673}} \@writefile{toc}{\contentsline {paragraph}{Compact Sets:}{313}{section*.674}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.10.6}Extended Real Numbers as Topological Spaces}{314}{subsection.675}} \newlabel{app:math_extended_real_numbers_as_metric_spaces}{{B.10.6}{314}{Extended Real Numbers as Topological Spaces\relax }{subsection.675}{}} \@writefile{toc}{\contentsline {paragraph}{Neighborhoods of Infinity:}{314}{section*.676}} \@writefile{toc}{\contentsline {paragraph}{Neighborhoods of Negative Infinity:}{314}{section*.677}} \@writefile{toc}{\contentsline {paragraph}{Intervals as Open and Closed Sets:}{314}{section*.678}} \@writefile{toc}{\contentsline {paragraph}{All Sets are Bounded:}{315}{section*.679}} \@writefile{toc}{\contentsline {paragraph}{Compact Sets:}{315}{section*.680}} \@writefile{toc}{\contentsline {section}{\numberline {B.11}Limits of Functions on Topological Spaces}{315}{section.681}} \newlabel{app:limits_in_topological_spaces}{{B.11}{315}{Limits of Functions on Topological Spaces\relax }{section.681}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.11.1}Limits of Functions}{315}{subsection.682}} \@writefile{toc}{\contentsline {paragraph}{Functions with Topological Codomains:}{316}{section*.683}} \@writefile{toc}{\contentsline {paragraph}{The Identity Function:}{316}{section*.684}} \@writefile{toc}{\contentsline {paragraph}{Functions on Topological Spaces:}{316}{section*.685}} \newlabel{eq:filter_base_for_limit}{{B.22}{316}{Functions on Topological Spaces:\relax }{equation.686}{}} \@writefile{symbols}{\indexentry{Ganalysis.122@[$f(x) \to q$] limit of function $f$ (\eg , as $x \to p$)~\bhypersym {sym:limfunc}|nopage}{317}} \newlabel{def:sym:limfunc}{{B.11.1}{317}{Functions on Topological Spaces:\relax }{equation.686}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.11.2}Limits from the Left and the Right}{317}{subsection.687}} \@writefile{toc}{\contentsline {paragraph}{Limits from the Left:}{317}{section*.688}} \newlabel{eq:filter_base_for_left_limit}{{B.23}{318}{Limits from the Left:\relax }{equation.689}{}} \@writefile{toc}{\contentsline {paragraph}{Limits from the Right:}{318}{section*.690}} \newlabel{eq:filter_base_for_right_limit}{{B.24}{319}{Limits from the Right:\relax }{equation.691}{}} \@writefile{toc}{\contentsline {paragraph}{Agreement of Left and Right Limits:}{319}{section*.692}} \newlabel{eq:left_and_right_limit_agreement}{{B.25}{320}{Agreement of Left and Right Limits:\relax }{equation.693}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.11.3}The Limit Inferior and Limit Superior}{320}{subsection.694}} \@writefile{toc}{\contentsline {paragraph}{The Limit Inferior of a Function:}{320}{section*.695}} \@writefile{toc}{\contentsline {paragraph}{The Handed Limit Inferiors of a Function:}{320}{section*.696}} \@writefile{toc}{\contentsline {paragraph}{The Limit Superior of a Function:}{321}{section*.697}} \@writefile{toc}{\contentsline {paragraph}{The Handed Limit Superiors of a Function:}{321}{section*.698}} \@writefile{toc}{\contentsline {paragraph}{Agreement of Four Limits:}{322}{section*.699}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.11.4}Limits of Nets}{323}{subsection.700}} \newlabel{app:math_lim_nets}{{B.11.4}{323}{Limits of Nets\relax }{subsection.700}{}} \@writefile{toc}{\contentsline {paragraph}{Limit of Tails of Directed Sets:}{324}{section*.701}} \newlabel{eq:filter_base_of_A_tails}{{B.26}{324}{Limit of Tails of Directed Sets:\relax }{equation.702}{}} \@writefile{toc}{\contentsline {paragraph}{Limit of a Net:}{324}{section*.703}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.11.5}Limits of Sequences}{325}{subsection.704}} \newlabel{app:math_lim_sequences}{{B.11.5}{325}{Limits of Sequences\relax }{subsection.704}{}} \@writefile{toc}{\contentsline {paragraph}{Limit of Tails of Natural Numbers:}{325}{section*.705}} \newlabel{eq:filter_base_of_N_tails}{{B.27}{325}{Limit of Tails of Natural Numbers:\relax }{equation.706}{}} \@writefile{toc}{\contentsline {paragraph}{Limit of a Sequence:}{326}{section*.707}} \@writefile{symbols}{\indexentry{Ganalysis.121@[$p_n \to p$] limit of sequence $(p_n)$~\bhypersym {sym:limseq}|nopage}{326}} \newlabel{def:sym:limseq}{{B.11.5}{326}{Limit of a Sequence:\relax }{section*.707}{}} \@writefile{toc}{\contentsline {paragraph}{Monotonic Sequences:}{326}{section*.708}} \newlabel{eq:monotonically_increasing_limit}{{B.28}{327}{Monotonic Sequences:\relax }{equation.709}{}} \newlabel{eq:monotonically_decreasing_limit}{{B.29}{327}{Monotonic Sequences:\relax }{equation.710}{}} \@writefile{toc}{\contentsline {paragraph}{Limit Inferior and Limit Superior:}{327}{section*.711}} \newlabel{eq:liminf_seq_definition}{{B.30}{327}{Limit Inferior and Limit Superior:\relax }{equation.712}{}} \newlabel{eq:limsup_seq_definition}{{B.31}{327}{Limit Inferior and Limit Superior:\relax }{equation.713}{}} \@writefile{toc}{\contentsline {paragraph}{Limit Inferior and Limit Superior as Limits:}{328}{section*.714}} \newlabel{eq:seq_liminf_as_limit}{{B.32}{328}{Limit Inferior and Limit Superior as Limits:\relax }{equation.715}{}} \newlabel{eq:seq_limsup_as_limit}{{B.33}{328}{Limit Inferior and Limit Superior as Limits:\relax }{equation.716}{}} \@writefile{toc}{\contentsline {paragraph}{Dominated Sequences:}{328}{section*.717}} \newlabel{eq:theorem_limsupinf_seq}{{B.34}{329}{Dominated Sequences:\relax }{equation.718}{}} \@writefile{toc}{\contentsline {paragraph}{Agreement of Limit Inferior and Limit Superior:}{329}{section*.719}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.11.6}Series}{329}{subsection.720}} \newlabel{app:math_series}{{B.11.6}{329}{Series\relax }{subsection.720}{}} \@writefile{toc}{\contentsline {paragraph}{Definition of a Series:}{329}{section*.721}} \newlabel{eq:series_notation}{{B.35}{330}{Definition of a Series:\relax }{equation.722}{}} \@writefile{toc}{\contentsline {paragraph}{Alternate Notations:}{330}{section*.723}} \newlabel{eq:series_notation_1}{{B.11.6}{330}{Alternate Notations:\relax }{section*.723}{}} \newlabel{eq:series_notation_a}{{B.11.6}{330}{Alternate Notations:\relax }{section*.723}{}} \@writefile{toc}{\contentsline {section}{\numberline {B.12}Continuous Functions}{331}{section.724}} \@writefile{toc}{\contentsline {paragraph}{Compactness and Continuity:}{331}{section*.725}} \@writefile{toc}{\contentsline {paragraph}{Compositions of Continuous Functions:}{332}{section*.726}} \@writefile{toc}{\contentsline {section}{\numberline {B.13}Basic Real Analysis}{332}{section.727}} \newlabel{app:math_real_analysis}{{B.13}{332}{Basic Real Analysis\relax }{section.727}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.13.1}Real-Valued Sequences and Functions}{332}{subsection.728}} \@writefile{toc}{\contentsline {paragraph}{Real and Extended Real Sequences:}{332}{section*.729}} \@writefile{toc}{\contentsline {paragraph}{Real and Extended Real Functions:}{333}{section*.730}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.13.2}Limiting Behavior}{333}{subsection.731}} \@writefile{toc}{\contentsline {paragraph}{Divergence of a Limit of Function or Sequence:}{333}{section*.732}} \@writefile{toc}{\contentsline {paragraph}{Oscillation of a Sequence or Function:}{334}{section*.733}} \@writefile{toc}{\contentsline {paragraph}{Extended Real Limit Inferior and Limit Superior:}{334}{section*.734}} \newlabel{eq:liminf_seq_always}{{B.36}{335}{Extended Real Limit Inferior and Limit Superior:\relax }{equation.735}{}} \newlabel{eq:limsup_seq_always}{{B.37}{335}{Extended Real Limit Inferior and Limit Superior:\relax }{equation.736}{}} \@writefile{toc}{\contentsline {paragraph}{Interpretation of Limit Inferior and Limit Superior for Reals:}{335}{section*.737}} \@writefile{toc}{\contentsline {paragraph}{Special Case of Limit Inferior and Limit Superior:}{336}{section*.738}} \@writefile{toc}{\contentsline {paragraph}{Extremum Limits and Convergence:}{337}{section*.739}} \@writefile{toc}{\contentsline {paragraph}{Limit Arithmetic:}{338}{section*.740}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.13.3}Semi-Continuity of Real-Valued Functions}{339}{subsection.741}} \@writefile{toc}{\contentsline {paragraph}{Lower Semi-Continuous Functions:}{339}{section*.742}} \@writefile{toc}{\contentsline {paragraph}{Upper Semi-Continuous Functions:}{340}{section*.743}} \@writefile{toc}{\contentsline {paragraph}{From Semi-Continuity to Continuity:}{340}{section*.744}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.13.4}The Intermediate Value Theorem}{341}{subsection.745}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.13.5}The Extreme Value Theorem}{341}{subsection.746}} \@writefile{toc}{\contentsline {section}{\numberline {B.14}Differentiation of Real-Valued Functions}{342}{section.747}} \@writefile{symbols}{\indexentry{Ganalysis.2b@[$f'(x_0)$] the first (ordinary) derivative of function $f$ at point $x_0$~\bhypersym {sym:first_oderiv}|nopage}{342}} \newlabel{def:sym:first_oderiv}{{B.14}{342}{Differentiation of Real-Valued Functions\relax }{section.747}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.1}Handed Derivatives}{343}{subsection.748}} \@writefile{symbols}{\indexentry{Ganalysis.2a@[$f'(x_0+)$] the right-hand derivative of function $f$ at point $x_0$~\bhypersym {sym:right_deriv}|nopage}{343}} \newlabel{def:sym:right_deriv}{{B.14.1}{343}{Handed Derivatives\relax }{subsection.748}{}} \@writefile{symbols}{\indexentry{Ganalysis.2a@[$f'(x_0-)$] the left-hand derivative of function $f$ at point $x_0$~\bhypersym {sym:left_deriv}|nopage}{343}} \newlabel{def:sym:left_deriv}{{B.14.1}{343}{Handed Derivatives\relax }{subsection.748}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.2}Functions with Interval Domains}{343}{subsection.749}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.3}Useful Information about Derivatives}{344}{subsection.750}} \@writefile{symbols}{\indexentry{Ganalysis.2b2@[$f''(x_0)$] the second (ordinary) derivative of function $f$ at point $x_0$~\bhypersym {sym:second_oderiv}|nopage}{344}} \newlabel{def:sym:second_oderiv}{{B.14.3}{344}{Useful Information about Derivatives\relax }{subsection.750}{}} \@writefile{symbols}{\indexentry{Ganalysis.2b3@[$f'''(x_0)$] the third (ordinary) derivative of function $f$ at point $x_0$~\bhypersym {sym:third_oderiv}|nopage}{344}} \newlabel{def:sym:third_oderiv}{{B.14.3}{344}{Useful Information about Derivatives\relax }{subsection.750}{}} \@writefile{symbols}{\indexentry{Ganalysis.2b4@[$f^{(n)}(x_0)$] the $n\th $ (ordinary) derivative of function $f$ at point $x_0$ where $n \in \{4,5,6,\dots \}$~\bhypersym {sym:n_oderiv}|nopage}{344}} \newlabel{def:sym:n_oderiv}{{B.14.3}{344}{Useful Information about Derivatives\relax }{subsection.750}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.4}Notation}{345}{subsection.751}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.5}The Intermediate Value Theorem}{346}{subsection.752}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.6}The Chain Rule}{346}{subsection.753}} \newlabel{app:math_chain_rule}{{B.14.6}{346}{The Chain Rule\relax }{subsection.753}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.7}Products and Quotients of Functions}{346}{subsection.754}} \@writefile{toc}{\contentsline {paragraph}{Products of Functions:}{347}{section*.755}} \@writefile{toc}{\contentsline {paragraph}{Quotients of Functions:}{347}{section*.756}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.8}The Mean Value Theorem}{347}{subsection.757}} \@writefile{toc}{\contentsline {paragraph}{Generalized Mean Value Theorem:}{347}{section*.758}} \@writefile{toc}{\contentsline {paragraph}{The Mean Value Theorem:}{348}{section*.759}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.9}The Racetrack Principle}{348}{subsection.760}} \@writefile{toc}{\contentsline {paragraph}{Rolle's Theorem:}{348}{section*.761}} \@writefile{toc}{\contentsline {paragraph}{The Racetrack Principle:}{348}{section*.762}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.10}Limits of Ratios of Differentiable Functions}{348}{subsection.763}} \newlabel{eq:lhospitals_left}{{B.38}{349}{Limits of Ratios of Differentiable Functions\relax }{Item.765}{}} \newlabel{eq:lhospitals_right}{{B.39}{350}{Limits of Ratios of Differentiable Functions\relax }{Item.767}{}} \newlabel{eq:lhospitals}{{B.40}{350}{Limits of Ratios of Differentiable Functions\relax }{equation.768}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.11}General Results for Differentiable Functions}{351}{subsection.769}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.14.12}Necessary Condition for Maxima and Minima}{352}{subsection.770}} \@writefile{toc}{\contentsline {paragraph}{Necessary Conditions for Minima:}{352}{section*.771}} \@writefile{toc}{\contentsline {paragraph}{Sufficient Conditions for Minima:}{352}{section*.772}} \@writefile{toc}{\contentsline {paragraph}{Necessary Conditions for Maxima:}{352}{section*.773}} \@writefile{toc}{\contentsline {paragraph}{Sufficient Conditions for Minima:}{353}{section*.774}} \@writefile{toc}{\contentsline {section}{\numberline {B.15}Partial and Total Derivatives}{353}{section.775}} \newlabel{app:math_partial_derivatives}{{B.15}{353}{Partial and Total Derivatives\relax }{section.775}{}} \@writefile{symbols}{\indexentry{Ganalysis.2y@[$\total f/\total t$] total derivative of function $f$ at point $t$~\bhypersym {sym:total_deriv}|nopage}{353}} \newlabel{def:sym:total_deriv}{{B.15}{353}{Partial and Total Derivatives\relax }{section.775}{}} \newlabel{item:total_deriv_function}{{i}{353}{Partial and Total Derivatives\relax }{Item.776}{}} \newlabel{item:total_deriv_point}{{ii}{353}{Partial and Total Derivatives\relax }{Item.777}{}} \newlabel{item:total_deriv_function_eval}{{iii}{354}{Partial and Total Derivatives\relax }{Item.778}{}} \@writefile{symbols}{\indexentry{Ganalysis.2z@[$\partial f/\partial x$] partial derivative of function $f$ with respect to $x$~\bhypersym {sym:partial_deriv}|nopage}{354}} \newlabel{def:sym:partial_deriv}{{B.15}{354}{Partial and Total Derivatives\relax }{Item.778}{}} \newlabel{item:partial_deriv_function}{{i}{354}{Partial and Total Derivatives\relax }{Item.779}{}} \newlabel{item:partial_deriv_point}{{ii}{354}{Partial and Total Derivatives\relax }{Item.780}{}} \newlabel{item:partial_deriv_function_eval}{{iii}{354}{Partial and Total Derivatives\relax }{Item.781}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.15.1}Functions of Multiple Variables}{354}{subsection.782}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.15.2}Second and Higher Total Derivatives}{355}{subsection.783}} \@writefile{symbols}{\indexentry{Ganalysis.2y2@[$\total ^2 f/{\total t}^2$] second total derivative of function $f$ (\ie , $f''$)~\bhypersym {sym:second_total_deriv}|nopage}{355}} \newlabel{def:sym:second_total_deriv}{{B.15.2}{355}{Second and Higher Total Derivatives\relax }{subsection.783}{}} \@writefile{symbols}{\indexentry{Ganalysis.2y3@[$\total ^3 f/{\total t}^3$] third total derivative of function $f$ (\ie , $f'''$)~\bhypersym {sym:third_total_deriv}|nopage}{355}} \newlabel{def:sym:third_total_deriv}{{B.15.2}{355}{Second and Higher Total Derivatives\relax }{subsection.783}{}} \@writefile{symbols}{\indexentry{Ganalysis.2yn@[$\total ^n f/{\total t}^n$] $n\th $ total derivative of function $f$ (\ie , $f^{(n)}$)~\bhypersym {sym:n_total_deriv}|nopage}{355}} \newlabel{def:sym:n_total_deriv}{{B.15.2}{355}{Second and Higher Total Derivatives\relax }{subsection.783}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.15.3}Second Partial Derivatives}{356}{subsection.784}} \@writefile{symbols}{\indexentry{Ganalysis.2zxy@[$\partial ^2 f/\partial x \partial y$] partial derivative of function $\partial f/\partial x$ with respect to $y$~\bhypersym {sym:second_partial_deriv}|nopage}{356}} \newlabel{def:sym:second_partial_deriv}{{B.15.3}{356}{Second Partial Derivatives\relax }{subsection.784}{}} \@writefile{toc}{\contentsline {section}{\numberline {B.16}Special Real-Valued Functions}{356}{section.785}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.16.1}The Exponential Function and Logarithms}{356}{subsection.786}} \newlabel{app:math_logarithms}{{B.16.1}{356}{The Exponential Function and Logarithms\relax }{subsection.786}{}} \@writefile{toc}{\contentsline {paragraph}{Euler's Number:}{356}{section*.787}} \@writefile{symbols}{\indexentry{Bnumbers.55@[$e$] Euler's number (\ie , constant $e \approx 2.71828182845904523536$)~\bhypersym {sym:econst}|nopage}{356}} \newlabel{def:sym:econst}{{B.16.1}{356}{Euler's Number:\relax }{section*.787}{}} \newlabel{eq:definition_e}{{B.41}{356}{Euler's Number:\relax }{equation.788}{}} \@writefile{symbols}{\indexentry{Ganalysis.001@[${n\bang }$] factorial of $n$ (\ie , ${n\bang }=1\times 2\times \cdots \times n$ with ${0\bang }=1$)~\bhypersym {sym:factorial}|nopage}{357}} \newlabel{def:sym:factorial}{{B.16.1}{357}{Euler's Number:\relax }{equation.788}{}} \@writefile{symbols}{\indexentry{Ageneral.1@[$\approx $] is approximately equal to~\bhypersym {sym:approx}|nopage}{357}} \newlabel{def:sym:approx}{{B.16.1}{357}{Euler's Number:\relax }{equation.788}{}} \@writefile{symbols}{\indexentry{Bnumbers.595@[$\exp (x)$] exponential function (\ie , $\exp (x) \triangleq e^x$)~\bhypersym {sym:expfunc}|nopage}{357}} \@writefile{toc}{\contentsline {paragraph}{Exponential Function:}{357}{section*.789}} \newlabel{def:sym:expfunc}{{B.16.1}{357}{Exponential Function:\relax }{section*.789}{}} \@writefile{toc}{\contentsline {paragraph}{The Natural Logarithm:}{357}{section*.790}} \@writefile{symbols}{\indexentry{Bnumbers.58@[$\ln (x)$] natural logarithm of positive real number $x$ (\ie , $e^{\ln (x)} = x$)~\bhypersym {sym:naturallog}|nopage}{357}} \newlabel{def:sym:naturallog}{{B.16.1}{357}{The Natural Logarithm:\relax }{section*.790}{}} \@writefile{toc}{\contentsline {paragraph}{The Common Logarithm:}{358}{section*.791}} \@writefile{symbols}{\indexentry{Bnumbers.57@[$\log (x)$] common logarithm of positive real number $x$ (\ie , $10^{\log (x)} = x$)~\bhypersym {sym:commonlog}|nopage}{358}} \newlabel{def:sym:commonlog}{{B.16.1}{358}{The Common Logarithm:\relax }{section*.791}{}} \@writefile{toc}{\contentsline {paragraph}{The Logarithm:}{358}{section*.792}} \@writefile{symbols}{\indexentry{Bnumbers.56@[$\log _b(x)$] logarithm of positive real number $x$ in base $b$ (\ie , $b^{\log _b(x)} = x$)~\bhypersym {sym:log}|nopage}{358}} \newlabel{def:sym:log}{{B.16.1}{358}{The Logarithm:\relax }{section*.792}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.16.2}Special Classes of Real Functions}{359}{subsection.793}} \newlabel{app:math_special_real_functions}{{B.16.2}{359}{Special Classes of Real Functions\relax }{subsection.793}{}} \@writefile{toc}{\contentsline {paragraph}{Polynomials:}{359}{section*.794}} \@writefile{toc}{\contentsline {paragraph}{Rational Functions:}{359}{section*.795}} \@writefile{toc}{\contentsline {section}{\numberline {B.17}Coordinate Vectors and Matrices}{360}{section.796}} \newlabel{app:math_vectors_matrices}{{B.17}{360}{Coordinate Vectors and Matrices\relax }{section.796}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.1}The Coordinate Vector Space}{360}{subsection.797}} \newlabel{app:math_coord_vector_space}{{B.17.1}{360}{The Coordinate Vector Space\relax }{subsection.797}{}} \@writefile{symbols}{\indexentry{Hvectors.2@[$y_i$] the $i\th $ coordinate of vector $\v {y}$~\bhypersym {sym:ithcoordinate}|nopage}{360}} \newlabel{def:sym:ithcoordinate}{{B.17.1}{360}{The Coordinate Vector Space\relax }{subsection.797}{}} \@writefile{symbols}{\indexentry{Hvectors.42@[$\v {e}_i$] the $i\th $ elementary (or standard) basis vector~\bhypersym {sym:ithbasisvector}|nopage}{361}} \newlabel{def:sym:ithbasisvector}{{B.17.1}{361}{The Coordinate Vector Space\relax }{subsection.797}{}} \@writefile{toc}{\contentsline {paragraph}{Notation and the Covector Space:}{362}{section*.798}} \@writefile{symbols}{\indexentry{Hvectors.3@[$\v {x}^\T $] the transpose of vector or covector $\v {x}$ (\ie , if $\v {x}$ is an $n$-vector then $\v {x} = [x_1, x_2, \dots , x_n]^\T )$~\bhypersym {sym:xtranspose}|nopage}{362}} \newlabel{def:sym:xtranspose}{{B.17.1}{362}{Notation and the Covector Space:\relax }{section*.798}{}} \@writefile{toc}{\contentsline {paragraph}{Multiplication of Vectors and Covectors:}{363}{section*.799}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.2}Real Inner-Product Spaces}{363}{subsection.800}} \@writefile{symbols}{\indexentry{Hvectors.4@[$\langle \v {x}, \v {y} \rangle $] the inner product of vectors $\v {x}$ and $\v {y}$~\bhypersym {sym:innerprod}|nopage}{363}} \newlabel{def:sym:innerprod}{{B.17.2}{363}{Real Inner-Product Spaces\relax }{subsection.800}{}} \@writefile{toc}{\contentsline {paragraph}{Dot Product:}{364}{section*.801}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.3}Normed Vector Spaces}{364}{subsection.802}} \newlabel{app:math_normed_vector_spaces}{{B.17.3}{364}{Normed Vector Spaces\relax }{subsection.802}{}} \@writefile{symbols}{\indexentry{Hvectors.401@[$\ppipe \v {x} \ppipe $] the norm of vector $\v {x}$~\bhypersym {sym:realnorm}|nopage}{365}} \newlabel{def:sym:realnorm}{{B.17.3}{365}{Normed Vector Spaces\relax }{subsection.802}{}} \@writefile{toc}{\contentsline {paragraph}{Norms as Metrics:}{365}{section*.806}} \@writefile{toc}{\contentsline {paragraph}{Metrics as Norms and Boundedness:}{365}{section*.807}} \newlabel{item:homogenous_metric}{{ii}{365}{Metrics as Norms and Boundedness:\relax }{Item.809}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.4}The Euclidean Space}{366}{subsection.810}} \newlabel{app:math_euclidean_space}{{B.17.4}{366}{The Euclidean Space\relax }{subsection.810}{}} \@writefile{toc}{\contentsline {paragraph}{Norm Induced by Inner-Product:}{367}{section*.811}} \@writefile{toc}{\contentsline {paragraph}{2-Norm Induced by Dot Product:}{367}{section*.812}} \@writefile{symbols}{\indexentry{Hvectors.402@[$\ppipe \v {x} \ppipe _2$] the Euclidean norm of vector $\v {x}$ (\ie , the norm induced by the dot product)~\bhypersym {sym:2norm}|nopage}{367}} \newlabel{def:sym:2norm}{{B.17.4}{367}{2-Norm Induced by Dot Product:\relax }{section*.812}{}} \@writefile{toc}{\contentsline {paragraph}{The Euclidean Metric:}{367}{section*.813}} \newlabel{item:homogenous_euclidean_metric}{{B.17.4}{368}{The Euclidean Metric:\relax }{section*.813}{}} \@writefile{toc}{\contentsline {paragraph}{The Euclidean Space:}{368}{section*.814}} \@writefile{symbols}{\indexentry{Bnumbers.545@[$\R ^n$] the Euclidean $n$-space~\bhypersym {sym:euclideanspace}|nopage}{368}} \newlabel{def:sym:euclideanspace}{{B.17.4}{368}{The Euclidean Space:\relax }{section*.814}{}} \@writefile{toc}{\contentsline {paragraph}{The Euclidean Topology and Compact Sets:}{368}{section*.815}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.5}Matrices}{369}{subsection.816}} \newlabel{app:math_matrices}{{B.17.5}{369}{Matrices\relax }{subsection.816}{}} \@writefile{symbols}{\indexentry{Bnumbers.5451@[$\R ^{n \times m}$] space of $n$-by-$m$ real matrices~\bhypersym {sym:realmatrices}|nopage}{369}} \newlabel{def:sym:realmatrices}{{B.17.5}{369}{Matrices\relax }{subsection.816}{}} \@writefile{symbols}{\indexentry{Hvectors.31@[$\mat {A}^\T $] the transpose of matrix $\mat {A}$~\bhypersym {sym:mattranspose}|nopage}{370}} \newlabel{def:sym:mattranspose}{{B.17.5}{370}{Matrices\relax }{subsection.816}{}} \@writefile{toc}{\contentsline {paragraph}{Matrix Addition:}{370}{section*.817}} \@writefile{toc}{\contentsline {paragraph}{Scalar (Matrix) Multiplication:}{371}{section*.818}} \@writefile{toc}{\contentsline {paragraph}{Matrix Multiplication:}{372}{section*.819}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.6}Square Matrices}{373}{subsection.820}} \@writefile{toc}{\contentsline {paragraph}{Square Matrix Multiplication:}{373}{section*.821}} \@writefile{toc}{\contentsline {paragraph}{Square Matrix Identity:}{373}{section*.822}} \@writefile{symbols}{\indexentry{Hvectors.45@[$\I $] the identity matrix~\bhypersym {sym:identitymatrix}|nopage}{373}} \newlabel{def:sym:identitymatrix}{{B.17.6}{373}{Square Matrix Identity:\relax }{section*.822}{}} \@writefile{toc}{\contentsline {paragraph}{Square Matrices as Unitary Associative Algebra:}{374}{section*.823}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.7}Matrices as Vector Functions}{374}{subsection.824}} \@writefile{toc}{\contentsline {paragraph}{Square Matrices as Functions:}{374}{section*.825}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.8}The Unitary Associative Real Algebra}{375}{subsection.826}} \@writefile{symbols}{\indexentry{Bnumbers.5452@[$\R ^{n \times n}$] the unitary associative real algebra~\bhypersym {sym:realalgebra}|nopage}{375}} \newlabel{def:sym:realalgebra}{{B.17.8}{375}{The Unitary Associative Real Algebra\relax }{subsection.826}{}} \@writefile{toc}{\contentsline {paragraph}{Symmetric Matrices:}{375}{section*.827}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.9}Vector Derivatives: Gradients and Hessians}{375}{subsection.828}} \@writefile{symbols}{\indexentry{Hvectors.5@[$\nabla _{\v {x}} f(\v {x})$] the gradient vector of function $f$ at $\v {x}$~\bhypersym {sym:gradient}|nopage}{375}} \newlabel{def:sym:gradient}{{B.17.9}{375}{Vector Derivatives: Gradients and Hessians\relax }{subsection.828}{}} \@writefile{symbols}{\indexentry{Hvectors.51@[$\nabla ^2_{\v {x}\v {x}} f(\v {x})$] the Hessian matrix of function $f$ at point $\v {x}$~\bhypersym {sym:hessian}|nopage}{376}} \newlabel{def:sym:hessian}{{B.17.9}{376}{Vector Derivatives: Gradients and Hessians\relax }{subsection.828}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.17.10}Euclidean Convexity}{376}{subsection.829}} \newlabel{app:math_euclidean_convexity}{{B.17.10}{376}{Euclidean Convexity\relax }{subsection.829}{}} \@writefile{toc}{\contentsline {paragraph}{Convex Sets of Scalars:}{376}{section*.830}} \@writefile{toc}{\contentsline {paragraph}{Cartesian Products of Convex Sets:}{377}{section*.831}} \@writefile{toc}{\contentsline {paragraph}{Functions on Convex Sets:}{377}{section*.832}} \newlabel{eq:convex_function_if}{{B.42}{377}{Functions on Convex Sets:\relax }{equation.833}{}} \@writefile{toc}{\contentsline {paragraph}{Convex Functions:}{377}{section*.834}} \newlabel{eq:convex_function_iff}{{B.43}{379}{Convex Functions:\relax }{equation.835}{}} \citation{Krantz01} \citation{Rudin76} \citation{Halmos50} \@writefile{toc}{\contentsline {paragraph}{Sufficiency Conditions for Convexity:}{380}{section*.836}} \@writefile{toc}{\contentsline {section}{\numberline {B.18}Measure Theory and Integration}{380}{section.837}} \newlabel{app:math_measure}{{B.18}{380}{Measure Theory and Integration\relax }{section.837}{}} \@writefile{brf}{\backcite{Krantz01}{{380}{B.18}{section.837}}} \@writefile{brf}{\backcite{Rudin76}{{380}{B.18}{section.837}}} \@writefile{brf}{\backcite{Halmos50}{{380}{B.18}{section.837}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.1}Sigma Algebras}{380}{subsection.838}} \newlabel{item:sigma_nonempty}{{i}{380}{Sigma Algebras\relax }{Item.839}{}} \newlabel{item:sigma_closed_complement}{{ii}{380}{Sigma Algebras\relax }{Item.840}{}} \newlabel{item:sigma_closed_countable_union}{{iii}{381}{Sigma Algebras\relax }{Item.841}{}} \@writefile{toc}{\contentsline {paragraph}{Sigma Notation:}{382}{section*.842}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.2}The Borel Algebra}{382}{subsection.843}} \@writefile{symbols}{\indexentry{Iprob.3@[$\Borel (\set {U})$] the Borel algebra of set $\set {U}$~\bhypersym {sym:borelalgebra}|nopage}{383}} \newlabel{def:sym:borelalgebra}{{B.18.2}{383}{The Borel Algebra\relax }{subsection.843}{}} \@writefile{toc}{\contentsline {paragraph}{Generalized Construction of Borel Algebra:}{383}{section*.844}} \@writefile{toc}{\contentsline {paragraph}{Construction of Borel Algebra of the Extended Reals:}{384}{section*.849}} \@writefile{toc}{\contentsline {paragraph}{Half-Line Construction of Extended Real Borel Algebra:}{385}{section*.854}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.3}Measures}{385}{subsection.855}} \newlabel{item:measure_zero}{{i}{385}{Measures\relax }{Item.856}{}} \newlabel{item:measure_countable_additivity}{{ii}{385}{Measures\relax }{Item.857}{}} \@writefile{toc}{\contentsline {paragraph}{Singleton Notation:}{386}{section*.858}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.4}Measurable Functions}{386}{subsection.859}} \@writefile{toc}{\contentsline {paragraph}{Borel measurable:}{386}{section*.860}} \@writefile{toc}{\contentsline {paragraph}{Real-valued measurable function:}{386}{section*.861}} \@writefile{toc}{\contentsline {paragraph}{Almost Everywhere Equivalence:}{387}{section*.862}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.5}The Lebesgue Integral}{387}{subsection.863}} \newlabel{app:math_lebesgue_integral}{{B.18.5}{387}{The Lebesgue Integral\relax }{subsection.863}{}} \@writefile{toc}{\contentsline {paragraph}{Characteristic Function:}{387}{section*.864}} \@writefile{toc}{\contentsline {paragraph}{Simple Functions:}{387}{section*.865}} \@writefile{toc}{\contentsline {paragraph}{The Integral:}{388}{section*.866}} \@writefile{toc}{\contentsline {paragraph}{Useful Properties of Integrals:}{390}{section*.867}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.6}The Lebesgue Measure}{390}{subsection.868}} \@writefile{toc}{\contentsline {paragraph}{Implied Measure Notation:}{391}{section*.869}} \@writefile{symbols}{\indexentry{Iprob.4@[$\int _a^b f(x) \total x$] the Lebesgue integral of function $f$ over interval $[a,b] \subset \extR $ with respect to the Lebesgue measure~\bhypersym {sym:integral}|nopage}{392}} \newlabel{def:sym:integral}{{B.18.6}{392}{Implied Measure Notation:\relax }{section*.869}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.7}Dirac Delta Measure}{392}{subsection.870}} \@writefile{symbols}{\indexentry{Iprob.5@[$\delta _a(\set {E})$] Dirac delta measure of set $\set {E}$ at point $a$ (\eg , $f(0) = \linebreak [4] \int _{-1}^1 f(x) \delta _0(\{x\}) \total x$)~\bhypersym {sym:diracdelta}|nopage}{392}} \newlabel{def:sym:diracdelta}{{B.18.7}{392}{Dirac Delta Measure\relax }{subsection.870}{}} \@writefile{symbols}{\indexentry{Iprob.50@[$\delta (x-p)$] Simplified Dirac delta measure notation (\ie , $\delta (x-p) \triangleq \delta _p(\{x\})$)~\bhypersym {sym:diracdeltasimp}|nopage}{392}} \newlabel{def:sym:diracdeltasimp}{{B.18.7}{392}{Dirac Delta Measure\relax }{subsection.870}{}} \@writefile{toc}{\contentsline {paragraph}{Integral Mass Notation:}{392}{section*.871}} \newlabel{eq:dirac_convention}{{B.44}{393}{Integral Mass Notation:\relax }{equation.872}{}} \@writefile{toc}{\contentsline {paragraph}{Singleton Notation for Reals:}{393}{section*.873}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.18.8}Convolution}{393}{subsection.874}} \newlabel{app:math_convolution}{{B.18.8}{393}{Convolution\relax }{subsection.874}{}} \citation{PapoulisPillai02} \citation{Viniotis98} \@writefile{symbols}{\indexentry{Iprob.41@[$f * g$] convolution of function $f$ with function $g$ (\ie , $(f * g)(t) \triangleq \int _{-\infty }^\infty f(\tau ) g(t-\tau ) \total \tau $)~\bhypersym {sym:convolution}|nopage}{394}} \newlabel{def:sym:convolution}{{B.18.8}{394}{Convolution\relax }{subsection.874}{}} \@writefile{toc}{\contentsline {section}{\numberline {B.19}Probability, Random Variables, and Random Vectors}{394}{section.875}} \newlabel{app:math_probability}{{B.19}{394}{Probability, Random Variables, and Random Vectors\relax }{section.875}{}} \@writefile{brf}{\backcite{PapoulisPillai02}{{394}{B.19}{section.875}}} \@writefile{brf}{\backcite{Viniotis98}{{394}{B.19}{section.875}}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.19.1}Probability Measures and Probability Spaces}{395}{subsection.876}} \newlabel{item:prob_nonnegtaive}{{i}{395}{Probability Measures and Probability Spaces\relax }{Item.877}{}} \newlabel{item:prob_certain_event}{{ii}{395}{Probability Measures and Probability Spaces\relax }{Item.878}{}} \newlabel{item:prob_countable_additivity}{{iii}{395}{Probability Measures and Probability Spaces\relax }{Item.879}{}} \@writefile{symbols}{\indexentry{Iprob.541@[$(\set {U},\Sigma ,\Pr )$] Probability space with outcomes $\set {U}$, $\sigma $-field of events $\Sigma $, and probability measure $\Pr $~\bhypersym {sym:probspace}|nopage}{395}} \newlabel{def:sym:probspace}{{B.19.1}{395}{Probability Measures and Probability Spaces\relax }{Item.879}{}} \@writefile{symbols}{\indexentry{Iprob.540@[$\Pr $] Probability measure~\bhypersym {sym:probmeasure}|nopage}{395}} \newlabel{def:sym:probmeasure}{{B.19.1}{395}{Probability Measures and Probability Spaces\relax }{Item.879}{}} \@writefile{toc}{\contentsline {paragraph}{Properties of a Probability Space:}{396}{section*.880}} \@writefile{toc}{\contentsline {paragraph}{Terminology:}{397}{section*.881}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.19.2}The Extended Reals as Probability Space}{397}{subsection.882}} \newlabel{app:math_extended_reals_prob_space}{{B.19.2}{397}{The Extended Reals as Probability Space\relax }{subsection.882}{}} \newlabel{eq:cdf_lsc}{{B.45}{398}{The Extended Reals as Probability Space\relax }{equation.883}{}} \newlabel{eq:cdf_lsc_limsup}{{B.46}{398}{The Extended Reals as Probability Space\relax }{equation.884}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.19.3}Random Variables}{401}{subsection.885}} \newlabel{app:math_random_variables}{{B.19.3}{401}{Random Variables\relax }{subsection.885}{}} \@writefile{symbols}{\indexentry{Iprob.545@[$\{X \leq a\}$] Measurable set induced by preimage of random variable $X$ (\ie , \linebreak [3] $\{ \zeta \in \set {U} : X(\zeta ) \leq a \}$)~\bhypersym {sym:setRV}|nopage}{401}} \newlabel{def:sym:setRV}{{B.19.3}{401}{Random Variables\relax }{subsection.885}{}} \@writefile{symbols}{\indexentry{Iprob.546@[$\Pr (X \leq a)$] Probability induced by preimage of random variable $X$ (\ie , \linebreak [3] $\Pr (\{ \zeta \in \set {U} : X(\zeta ) \leq a \})$)~\bhypersym {sym:probRV}|nopage}{402}} \newlabel{def:sym:probRV}{{B.19.3}{402}{Random Variables\relax }{subsection.885}{}} \@writefile{toc}{\contentsline {paragraph}{Cumulative Distributions and Probability Densities:}{402}{section*.886}} \@writefile{symbols}{\indexentry{Iprob.55@[$F_X(x)$] Cumulative distribution function for random variable $X$ (\ie , $F_X(a) \triangleq \Pr (X \leq a)$)~\bhypersym {sym:cdf}|nopage}{402}} \newlabel{def:sym:cdf}{{B.19.3}{402}{Cumulative Distributions and Probability Densities:\relax }{section*.886}{}} \@writefile{symbols}{\indexentry{Iprob.55@[$F_X(x+)$] Limit superior of $F_x$ at point $p$~\bhypersym {sym:cdfplus}|nopage}{402}} \newlabel{def:sym:cdfplus}{{B.19.3}{402}{Cumulative Distributions and Probability Densities:\relax }{section*.886}{}} \@writefile{symbols}{\indexentry{Iprob.56@[$f_X(x)$] Probability density function for random variable $X$ (\ie , $F_X(a) = \int _{-\infty }^a f_X(x) \total x$)~\bhypersym {sym:pdf}|nopage}{403}} \newlabel{def:sym:pdf}{{B.19.3}{403}{Cumulative Distributions and Probability Densities:\relax }{section*.886}{}} \@writefile{toc}{\contentsline {paragraph}{Omission of Domain and Codomain in Notation:}{403}{section*.887}} \@writefile{toc}{\contentsline {paragraph}{Statistical Independence of Events:}{404}{section*.888}} \@writefile{toc}{\contentsline {paragraph}{Conditional Probabilities:}{404}{section*.889}} \@writefile{toc}{\contentsline {paragraph}{Memorylessness:}{406}{section*.890}} \@writefile{toc}{\contentsline {paragraph}{Functions of Random Variables:}{406}{section*.891}} \@writefile{toc}{\contentsline {paragraph}{Exclusion of Outcome in Notation:}{406}{section*.892}} \@writefile{toc}{\contentsline {paragraph}{Expectation of a Random Variable:}{407}{section*.893}} \@writefile{symbols}{\indexentry{Iprob.61@[$\E (g(X))$] Expectation of function $g$ of random variable $X$ (\ie , \linebreak [4] $\int _{-\infty }^\infty g(x) f_X(x) \total x$)~\bhypersym {sym:expectationgX}|nopage}{407}} \newlabel{def:sym:expectationgX}{{B.19.3}{407}{Expectation of a Random Variable:\relax }{section*.893}{}} \@writefile{symbols}{\indexentry{Iprob.60@[$\E (X)$] Expectation of random variable $X$ (\ie , \linebreak [4] $\int _{-\infty }^\infty x f_X(x) \total x$)~\bhypersym {sym:expectationX}|nopage}{407}} \newlabel{def:sym:expectationX}{{B.19.3}{407}{Expectation of a Random Variable:\relax }{section*.893}{}} \@writefile{toc}{\contentsline {paragraph}{Linearity of Expectation:}{407}{section*.894}} \@writefile{toc}{\contentsline {paragraph}{Variance of a Random Variable:}{408}{section*.895}} \@writefile{symbols}{\indexentry{Iprob.62@[$\var (X)$] Variance of random variable $X$ (\ie , $\var (X) = \E (X^2) - \E (X)^2$)~\bhypersym {sym:varianceX}|nopage}{408}} \newlabel{def:sym:varianceX}{{B.19.3}{408}{Variance of a Random Variable:\relax }{section*.895}{}} \@writefile{toc}{\contentsline {paragraph}{Properties of Variance:}{408}{section*.896}} \@writefile{symbols}{\indexentry{Iprob.63@[$\cov (X,Y)$] Covariance of random variables $X$ and $Y$ (\ie , $\cov (X,Y) = \E (XY) - \E (X)\E (Y)$)~\bhypersym {sym:covarianceXY}|nopage}{409}} \newlabel{def:sym:covarianceXY}{{B.19.3}{409}{Properties of Variance:\relax }{section*.896}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.19.4}Relationship Between Random Variables}{409}{subsection.897}} \@writefile{toc}{\contentsline {paragraph}{Identically Distributed Random Variables:}{410}{section*.898}} \@writefile{toc}{\contentsline {paragraph}{Joint Distributions and Densities:}{410}{section*.899}} \@writefile{symbols}{\indexentry{Iprob.65@[$F_{XY}(x,y)$] Joint distribution function for random variables $X$ and $Y$ (\ie , $F_{XY}(a,b) \triangleq \Pr (X \leq a, Y \leq b)$)~\bhypersym {sym:jcdf}|nopage}{410}} \newlabel{def:sym:jcdf}{{B.19.4}{410}{Joint Distributions and Densities:\relax }{section*.899}{}} \@writefile{symbols}{\indexentry{Iprob.66@[$f_{XY}(x,y)$] Joint density function for random variables $X$ and $Y$~\bhypersym {sym:jpdf}|nopage}{410}} \newlabel{def:sym:jpdf}{{B.19.4}{410}{Joint Distributions and Densities:\relax }{section*.899}{}} \@writefile{toc}{\contentsline {paragraph}{Conditional Random Variables:}{411}{section*.900}} \@writefile{symbols}{\indexentry{Iprob.670@[$f_{Y \pipe X}(y \pipe x)$] Conditional density function for random variable $Y$ given $X=x$~\bhypersym {sym:condpdf}|nopage}{411}} \newlabel{def:sym:condpdf}{{B.19.4}{411}{Conditional Random Variables:\relax }{section*.900}{}} \@writefile{symbols}{\indexentry{Iprob.671@[$F_{Y \pipe X}(y \pipe x)$] Conditional distribution function for random variable $Y$ given $X=x$~\bhypersym {sym:condcdf}|nopage}{411}} \newlabel{def:sym:condcdf}{{B.19.4}{411}{Conditional Random Variables:\relax }{section*.900}{}} \@writefile{toc}{\contentsline {paragraph}{Conditional Expectation:}{411}{section*.901}} \@writefile{symbols}{\indexentry{Iprob.68@[$\E (Y \pipe X)$] Conditional expectation of $Y$ given $X$~\bhypersym {sym:condexp}|nopage}{411}} \newlabel{def:sym:condexp}{{B.19.4}{411}{Conditional Expectation:\relax }{section*.901}{}} \newlabel{eq:expectation_to_condexp}{{B.47}{412}{Conditional Expectation:\relax }{equation.902}{}} \@writefile{toc}{\contentsline {paragraph}{Uncorrelated Random Variables:}{412}{section*.903}} \@writefile{toc}{\contentsline {paragraph}{Statistically Independent Random Variables:}{412}{section*.904}} \@writefile{toc}{\contentsline {paragraph}{Pairwise Independent Random Variables:}{414}{section*.905}} \@writefile{toc}{\contentsline {paragraph}{Mutually Independent Random Variables:}{414}{section*.906}} \@writefile{toc}{\contentsline {paragraph}{Independent and Identically Distributed Random Variables:}{414}{section*.907}} \@writefile{acronyms}{\indexentry{IID@[\iid ] independent and identically distributed~\bhypersym {acro:\iid }|nopage}{414}} \newlabel{def:acro:i.i.d.}{{B.19.4}{414}{Independent and Identically Distributed Random Variables:\relax }{section*.907}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.19.5}Random Vectors}{415}{subsection.908}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.19.6}Common Random Variables}{415}{subsection.909}} \@writefile{toc}{\contentsline {section}{\numberline {B.20}Random Processes}{418}{section.910}} \newlabel{app:probability_rp}{{B.20}{418}{Random Processes\relax }{section.910}{}} \@writefile{symbols}{\indexentry{Iprob.70@[$( \v {N}(t) : t \in \R _{\geq 0})$] Random process (\ie , $\v {N}(t)$ is a random vector for all $t \in \R _{>0}$)~\bhypersym {sym:randomprocess}|nopage}{418}} \newlabel{def:sym:randomprocess}{{B.20}{418}{Random Processes\relax }{section.910}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.20.1}Continuous and Discrete Time Processes}{418}{subsection.911}} \@writefile{toc}{\contentsline {paragraph}{Markov Processes and Chains:}{419}{section*.912}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.20.2}Sure and Almost Sure Stochastic Convergence}{420}{subsection.913}} \@writefile{symbols}{\indexentry{Iprob.72@[$Y(t) \to Y$] Random process $Y(t)$ converges surely to $Y$~\bhypersym {sym:sureconvergence}|nopage}{421}} \newlabel{def:sym:sureconvergence}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{symbols}{\indexentry{Iprob.7201@[$Y(t) \xto {s.} Y$] Random process $Y(t)$ converges surely to $Y$~\bhypersym {sym:ssureconvergence}|nopage}{421}} \newlabel{def:sym:ssureconvergence}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{symbols}{\indexentry{Iprob.7202@[$\lim \limits _{t\to \infty } Y(t) = Y$] Random process $Y(t)$ converges surely to $Y$~\bhypersym {sym:slimsureconvergence}|nopage}{421}} \newlabel{def:sym:slimsureconvergence}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{symbols}{\indexentry{Iprob.7301@[$Y(t) \xto {a.s.} Y$] Random process $Y(t)$ converges almost surely (\ie , with probability 1) to $Y$~\bhypersym {sym:asureconvergence}|nopage}{421}} \newlabel{def:sym:asureconvergence}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{symbols}{\indexentry{Iprob.7302@[$Y(t) \xto {w.p.1} Y$] Random process $Y(t)$ converges almost surely (\ie , with probability 1) to $Y$~\bhypersym {sym:asureconvergencewp1}|nopage}{421}} \newlabel{def:sym:asureconvergencewp1}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{symbols}{\indexentry{Iprob.7303@[$\aslim \limits _{t \to \infty } Y(t) = Y$] Random process $Y(t)$ converges almost surely (\ie , with probability 1) to $Y$~\bhypersym {sym:asureconvergenceaslim}|nopage}{421}} \newlabel{def:sym:asureconvergenceaslim}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{acronyms}{\indexentry{AS@[AS] almost sure~\bhypersym {acro:AS}|nopage}{421}} \newlabel{def:acro:AS}{{B.20.2}{421}{Sure and Almost Sure Stochastic Convergence\relax }{subsection.913}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.20.3}Stochastic Convergence to Random Variables}{421}{subsection.914}} \@writefile{symbols}{\indexentry{Iprob.7401@[$Y(t) \xto {P} Y$] Random process $Y(t)$ converges in probability to random variable $Y$~\bhypersym {sym:convergenceinp}|nopage}{421}} \newlabel{def:sym:convergenceinp}{{B.20.3}{421}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7402@[$Y(t) \xto {\Pr } Y$] Random process $Y(t)$ converges in probability to random variable $Y$~\bhypersym {sym:convergenceinpr}|nopage}{421}} \newlabel{def:sym:convergenceinpr}{{B.20.3}{421}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7403@[$\plim \limits _{t \to \infty } Y(t) = Y$] Random process $Y(t)$ converges in probability to random variable $Y$~\bhypersym {sym:convergenceinplim}|nopage}{421}} \newlabel{def:sym:convergenceinplim}{{B.20.3}{421}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7501@[$Y(t) \xto {m.} Y$] Random process $Y(t)$ converges in the mean to random variable $Y$~\bhypersym {sym:meanconvergence}|nopage}{422}} \newlabel{def:sym:meanconvergence}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7502@[$\limean \limits _{t \to \infty } Y(t) = Y$] Random process $Y(t)$ converges in the mean to random variable $Y$ (\ie , $Y$ is \emph {l}imit \emph {i}n the \emph {m}ean)~\bhypersym {sym:limeanconvergence}|nopage}{422}} \newlabel{def:sym:limeanconvergence}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7503@[$Y(t) \xto {m.s.} Y$] Random process $Y(t)$ converges in the mean square to random variable $Y$~\bhypersym {sym:msconvergence}|nopage}{422}} \newlabel{def:sym:msconvergence}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7504@[$\mslim \limits _{t \to \infty } Y(t) = Y$] Random process $Y(t)$ converges in the mean square to random variable $Y$~\bhypersym {sym:mslimconvergence}|nopage}{422}} \newlabel{def:sym:mslimconvergence}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{acronyms}{\indexentry{MS@[MS] mean-square~\bhypersym {acro:MS}|nopage}{422}} \newlabel{def:acro:MS}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7601@[$Y(t) \xto {D} Y$] Random process $Y(t)$ converges in distribution to random variable $Y$~\bhypersym {sym:convergenceind}|nopage}{422}} \newlabel{def:sym:convergenceind}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7602@[$Y(t) \xto {d} Y$] Random process $Y(t)$ converges in distribution to random variable $Y$~\bhypersym {sym:convergenceinsmalld}|nopage}{422}} \newlabel{def:sym:convergenceinsmalld}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{symbols}{\indexentry{Iprob.7603@[$\dlim \limits _{t \to \infty } Y(t) = Y$] Random process $Y(t)$ converges in distribution to random variable $Y$~\bhypersym {sym:convergenceindlim}|nopage}{422}} \newlabel{def:sym:convergenceindlim}{{B.20.3}{422}{Stochastic Convergence to Random Variables\relax }{subsection.914}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.20.4}Relationships Among Kinds of Stochastic Convergence}{423}{subsection.915}} \@setckpt{oft_zapp2_math}{ \setcounter{page}{424} \setcounter{equation}{47} \setcounter{enumi}{3} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{2} \setcounter{section}{20} \setcounter{subsection}{4} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{4} \setcounter{table}{4} \setcounter{disspage}{3} \setcounter{NAT@ctr}{0} \setcounter{parentequation}{5} \setcounter{KVtest}{1} \setcounter{subfigure}{0} \setcounter{subfigure@save}{6} \setcounter{lofdepth}{2} \setcounter{subtable}{0} \setcounter{subtable@save}{0} \setcounter{lotdepth}{1} \setcounter{Item}{156} \setcounter{Hfootnote}{0} \setcounter{section@level}{2} }