% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z % Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z % Digits 0 1 2 3 4 5 6 7 8 9 % Exclamation ! Double quote " Hash (number) # % Dollar $ Percent % Ampersand & % Acute accent ' Left paren ( Right paren ) % Asterisk * Plus + Comma , % Minus - Point . Solidus / % Colon : Semicolon ; Less than < % Equals = Greater than > Question mark ? % At @ Left bracket [ Backslash \ % Right bracket ] Circumflex ^ Underscore _ % Grave accent ` Left brace { Vertical bar | % Right brace } Tilde ~ % ---------------------------------------------------------------------| % --------------------------- 72 characters ---------------------------| % ---------------------------------------------------------------------| % % Optimal Foraging Theory Revisited: Appendix A. Limits of Markov % Renewal Processes % % (c) Copyright 2007 by Theodore P. Pavlic % \chapter{Limits of Markov Renewal Processes} \label{app:markov_renewal_sto_limits}\aimention{Andrei A. Markov}% \index{stochasticity!Markov renewal process|(}% \index{stochasticity!Markov renewal process!limits|(} \index{Markov renewal process|see{stochasticity, Markov renewal process}}\index{renewal process|see{stochasticity, Markov renewal process}}\index{Poisson process|see{stochasticity, Poisson process}}Take a \index{stochasticity!probability space}probability space $(\set{U},\Sigma,\Pr)$. Let $(M(t_s): t_s \in \R_{\geq0})$ be a \index{stochasticity!Poisson process}\aimention{Sim\'{e}on-Denis Poisson}Poisson process from the space with rate $\lambda \in \R_{>0}$ and interevent time process $(\Upsilon_M)$. Take $(\tau_M)$ to be a sequence of non-negative random variables from this space where $\tau_M$ is independent of $\Upsilon_N$ for all $M,N \in \N$. From these, define the random processes $(T_N)$ and $(T^N)$ with % \begin{equation*} T_N \triangleq \Upsilon_N + \tau_N \quad \text{ and } \quad T^N \triangleq \sum\limits_{i=1}^N T_N = \sum\limits_{i=1}^N \Upsilon_i + \tau_i \end{equation*} % for all $N \in \N$ and $\zeta \in \set{U}$. Define the \index{stochasticity!Markov renewal process}\aimention{Andrei A. Markov}Markov renewal process $(N(t): t \in \R_{\geq0})$ by % \begin{equation*} N(t) \triangleq \sup \left\{ N \in \N : \sum\limits_{i=1}^N T_i \leq t \right\} \end{equation*} % For all outcomes $\zeta \in \set{U}$, % \begin{equation*} T^2 = T_1 + T_2 = \Upsilon_1 + \Upsilon_2 + \tau_1 + \tau_2 = A^2 + B^2 \end{equation*} % where random variables $A^2: \set{U} \mapsto \extR$ and $B^2: \set{U} \mapsto \extR$ are defined by $A^2 \triangleq \Upsilon_1 + \Upsilon_2$ and $B^2 \triangleq \tau_1 + \tau_2$ for all $\zeta \in \set{U}$. For brevity, we assume that the probability measures associated with these two random variables are absolutely continuous with respect to the \aimention{Henri L. Lebesgue}Lebesgue measure\footnote{By the \aimention{Sim\'{e}on-Denis Poisson}Poisson assumption, this must be true for $A^2$.}. The main result of this appendix holds for the general case as well. Because $T^2$ is the sum of two independent random variables, for all $x \in \extR$, $f_{T^2}(x) = f_{A^2}(x) * f_{B^2}(x)$ where the $*$ operator denotes \index{mathematics!functions!convolution ($*$)}convolution \citep{PapoulisPillai02}. Therefore, % \begin{align*} \E\left( \frac{1}{T^2} \right) &= \int_{-\infty}^\infty \frac{1}{x} \left(f_{A^2}(x) * f_{B^2}(x)\right) \total x\\ %&= %\int_{-\infty}^\infty %\left(\frac{1}{x} f_{A^2}(x)\right) * f_{B^2}(x) \total x\\ &= \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{1}{x} f_{A^2}(x-t) f_{B^2}(t) \total t \total x\\ &= \int_{-\infty}^\infty \int_{-\infty}^\infty \frac{1}{x} f_{A^2}(x-t) f_{B^2}(t) \total x \total t\\ %&= %\int_{-\infty}^\infty %f_{B^2}(t) %\int_{-\infty}^\infty %\frac{1}{x} f_{A^2}(x-t) \total x \total t\\ &= \int_{-\infty}^\infty f_{B^2}(t) \int_{-\infty}^\infty \frac{1}{y+t} f_{A^2}(y) \total y \total t \end{align*} % However, $f_{B^2}$ is a probability density where $f_{B^2}(t)=0$ for all $t < 0$, and so % \begin{equation*} \E\left( \frac{1}{T^2} \right) \leq \int_{-\infty}^\infty \frac{1}{y} f_{A^2}(y) \total y \end{equation*} % Because $(\Upsilon_M)$ is the interevent time process for \index{stochasticity!Poisson process}\aimention{Sim\'{e}on-Denis Poisson}Poisson process $(M(t_s):t_s \in \R_{\geq0})$, $A^2$ is \index{Erlang-2|see{stochasticity, distributions, Erlang-2}}% \index{stochasticity!distributions!Erlang-2}Erlang-2 distributed% \footnote{\index{stochasticity!distributions!Erlang-2|(indexdef}The Erlang-2 distribution is characterized by density $f_{A^2}(y) = \lambda^2 y \exp(-\lambda y)$ for $y > 0$.\index{stochasticity!distributions!Erlang-2|)indexdef}} with parameter $\lambda$. Thus, $\E( 1/T^2 ) \leq \lambda$. So, there exists an $N \in \N$ such that $\E( 1 / T^N ) < \infty$. By results of \citet{JohnsMiller63}, for all $K \in \N$, % \begin{equation*} \aslim\limits_{t \to \infty} \frac{ N(t) }{t} = \lim\limits_{t \to \infty} \frac{ \E( N(t) ) }{t} = \aslim\limits_{N \to \infty} \frac{ N }{ T^N } = \lim\limits_{N \to \infty} \E\left( \frac{ N }{ T^N } \right) = \frac{K}{ \E(T^K) } = \frac{1}{ \E(T_1) } \end{equation*} % where % \begin{equation*} \frac{1}{ \E(T_1) } = \frac{1}{ \E( \Upsilon_1 ) + \E( \tau_1 ) } = \frac{1}{ \frac{1}{\lambda} + \E( \tau_1 ) } \end{equation*} % This could be called the \emph{long-term encounter rate} of $(N(t):t \in \R_{\geq0})$. Now define the process $(T(t): t \in \R_{\geq0})$ by % \begin{equation*} T(t) \triangleq T^{N(t)} = \sum\limits_{i=1}^{N(t)} T_1 \end{equation*} % for all $t \in \R_{\geq0}$. It is similarly the case that % \begin{equation*} \aslim\limits_{t \to \infty} \frac{ T(t) }{t} = \lim\limits_{t \to \infty} \frac{ \E( T(t) ) }{t} = 1 \end{equation*} \index{stochasticity!Markov renewal process!limits|)}% \index{stochasticity!Markov renewal process|)}