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can calculate rate-maximizing prey choice in real time without
sorting and searching (Pavlic and Passino 2010a).
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eS

(Pavlic and Passino 2010c)

B Generalized autonomous agent faces n € N types of lumped tasks
07 =7, :T,;L foralli € {1,2,...,n}
O [p;,p ] =1[0,1]foralli € {1,2,...,n}
B Payload only supports NV € N tasks serviced
[0 N packages (food, artillery) to deploy
[0 N eggs to oviposit (e.g., parasitoid oviposition)
B Objective: Accumulate G € Rvalue by end-of-life

[0 Threshold for mission to be considered success

(1 Threshold for genes proliferation/survival to next foraging bout

ate maximization assumptions not valid for this case
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Advantage-to- : _C —+ Z )\sz (g’L (Tz) ij )
disadvantage E i=1

function : — oy

Finite-event scenario  «

Impulsiveness and E 1 —|_ Z >\’Lp’L7—’L

operant conditioning ™ E 1=1

Sunk-cost effest

where TV £ (time after N™ processed task).

Cooperative task
processing

MultilFD: Distributed
gradient descent for
constrained optimization ¢

B Generalized profitability for ¢ € {1,2,...,n}:

Closing remarks aﬂL (7_2*) A gz (TZ*) L GTT
Future directions™ dz (,7_7;* ) — ,7_7;*

Ranking depends on success threshold GT (matches SDP).
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L ]

Engineering Serendipity

n = 5 task types, N = 300 tasks per mission, 100 Monte Carlo samples (mean + SEM)
§ Take all Classical Excess estClassical estExcess
? Q(TN): 16565 =30 10946 =16 20473 £25 11218 =128 18119 £ 38
~ >GT. 100% 100% 100% 98% 100%

O TN: 11119+42 4391 +8 9227 £ 13 4567 £+ 63 11668 + 43
§ Take all Classical Excess estClassical estExcess
= Q(TN): 16642 +33 10958 =16 25153 £ 11 112704103 18647 + 44
&” > GT. 100% 0% 100% 5% 100%

@) TN: 11158 +38 4393 +8 15645 +42 4586 + 50 12779 + 46
§ Take all Classical Excess estClassical estExcess
= Q(TN): 16546 =34 10993 =16 25141 £14 10965 +91 18796 £+ 39
&” > GT 55% 0% 100% 0% 100%

@) TN: 11092 +40 4421 +8 15605+ 53 4440 + 43 13120+ 44

()\17917 Tl) - (057 307 10)1 ()\279277-2) = (0257 507 20)’ ()\379377_3> = (047 807 35)’

(A4, g4,74) = (0.1,100, 110), (X5, g5, 75) = (0.8,55,50), ¢* = 0.1

B Take high gain only: 29700 (36000 time)

B Take high profitability only: 8940 (3600 time)

e high excess profitability only: 23925 (11250 time)

Optimal Task-Processing Agents

)

(Pavlic and Passino 2010c)
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cal rationality: Operant laboratory impulsiveness

(Pavlic and Passino 2\10a)

B Laboratory impulsiveness (Ainslie 1974; Bateson and Kacelnik
1996; Bradshaw and Szabadi 1992; Green et al. 1981; McDiarmid
and Rilling 1965; Rachlin and Green 1972; Siegel and Rachlin 1995;
Snyderman 1983; Stephens and Anderson 2001)
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cal rationality: Operant laboratory impulsiveness'

(Pavlic and Passino 2010a)

B Laboratory impulsiveness

[1 Using starvation, animals are trained to use a Skinner box

[1 Repeat mutually exclusive binary-choice trials (at low weight)
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cal rationality: Operant laboratory impulsiveness'

(Pavlic and Passino 2\10a)

B Laboratory impulsiveness

[1 Using starvation, animals are trained to use a Skinner box

[1 Repeat mutually exclusive binary-choice trials (at low weight)

B What can be inferred about Skinner box results?
[J Violates assumption that simultaneous encounters occur with
probability zero (Poisson assumption)
1 Mutually exclusive choice unlikely when prey is immobile
[0 Impulsiveness vanishes for patch decision (Stephens et al. 2004)

[1 Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)
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cal rationality: Operant laboratory impulsiveness'

(Pavlic and Passino 2\Q\10a)

B Laboratory impulsiveness

[1 Using starvation, animals are trained to use a Skinner box

[1 Repeat mutually exclusive binary-choice trials (at low weight)

B What can be inferred about Skinner box results?
[J Violates assumption that simultaneous encounters occur with
probability zero (Poisson assumption)
1 Mutually exclusive choice unlikely when prey is immobile
[0 Impulsiveness vanishes for patch decision (Stephens et al. 2004)

[1 Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

B Skinner trials are worst-case scenario for a robot

[J Predisposes robots to underestimate (adds suboptimal eq.)
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cal rationality: Operant laboratory impulsiveness'

(Pavlic and Passino 2\Q\10a)

B Laboratory impulsiveness

[1 Using starvation, animals are trained to use a Skinner box

[1 Repeat mutually exclusive binary-choice trials (at low weight)

B What can be inferred about Skinner box results?
[J Violates assumption that simultaneous encounters occur with
probability zero (Poisson assumption)
1 Mutually exclusive choice unlikely when prey is immobile
[0 Impulsiveness vanishes for patch decision (Stephens et al. 2004)

[1 Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

B Skinner trials are worst-case scenario for an animal?

[0 Predisposes animals to underestimate? (adds suboptimal eq.)
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cal rationality: Operant laboratory impulsiveness'

*

(Pavlic and Passino 2010a)

B Graphical description of optimal prey choice:

Processing gain

| For type i: @ orQ @ (processing time 7;, gain g(7;)) I

\

(73, 93)
(11,91) *
[ J

Y

Processing time
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cal rationality: Operant laboratory impulsiveness'
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(Pavlic and Passino 2\10a)

B Graphical description of optimal prey choice:

| For type i: @ orQ @ (processing time 7;, gain g(7;)) I

A
(73, 93)
(11,91) *
[ J

Processing gain
. 9
=
. &
\ "
\

Y

Processing time

Accumulated net gain

.'.@
T2

Y

Time

Process encounter k when g; k) /i) > G(t(k))/t(k)

B Rule (even with mistakes) is optimal facing Poisson encounters (i.e.,

simultaneous w.p.0)
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[0 Digestive rate constraints (b;: prey bulk) (Hirakawa 1995):

n p; =1
> Aipibi
izln <B KKT

1 —+ Z )\ipz'Tz' PZ*—1 =1

=1 P € 10, 1]

Partial Preferences
(rank by g;/b;)

Digression
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cal rationality: Operant laboratory impulsiveness'

B Graphical description of optimal prey choice:

G(t): Accumulated net gain

Type-# encounter:@(Process) or @ (Ignore)

t>Total search and processing time

*

(Pavlic and Passino 2\10a)

Accumulated net gain

9
T2

Y

Time

Process encounter k when g; i)/ Tik) > G(t(k))/t(k)

B Attention: simultaneous encounter (w.p.0) = low time first
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cal rationality: Operant laboratory impulsiveness'

B Graphical description of optimal prey choice:

G(t): Accumulated net gain

Type-# encounter:@(Process) or @ (Ignore)

t>Total search and processing time

*

(Pavlic and Passino 2\10a)

Accumulated net gain

i *
Rtype—Q—onlyA‘

.
>

Time

Process encounter k when g; i)/ Tik) > G(t(k))/t(k)

B Attention: simultaneous encounter (w.p.1) = low time first
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cal rationality: Operant laboratory impulsiveness'

B Graphical description of optimal prey choice:

G(t): Accumulated net gain

Type-# encounter:@(Process) or @ (Ignore)

t>Total search and processing time

*

(Pavlic and Passino 2\Q\10a)

Accumulated net gain

Y

Time

Process encounter k when g; i)/ Tik) > G(t(k))/t(k)

B Attention: simultaneous encounter (w.p.1) —> either first

[J Lucky runs accumulate high initial estimate

m Lucky forager specializes; unlucky forager generalizes
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cal rationality: Operant laboratory impulsiveness'

B Graphical description of optimal prey choice:

G(t): Accumulated net gain

Type-# encounter:@(Process) or @ (Ignore)

t>Total search and processing time

*

(Pavlic and Passino 2\Q\10a)

Accumulated net gain

4 ..'.-' ”/_/' «
ot L= Rtype—Q—onlyA‘

.
>

Time

Process encounter k when g; i)/ Tik) > G(t(k))/t(k)

B Attention: simultaneous encounter (w.p.1) = low time first

[J Rescue optimality with early ad libitum feeding
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B Nolet et al. (2001) are unable to explain spatial differences i

swan foraging

(Pavllc and

Passino 2010b)

tundra
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B Nolet et al. (2001) are unable to explain spatial differences i

(Pavllc and Passino 2010b)

tundra
swan foraging

[ In shallow water, swans feeding on tubers can “head
[0 In deep water, they must “up end,” which requires more energy

[0 Nolet et al. find no theoretical justification for longer times at

the more energetic tasks

| © Gemma Longman
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B Nolet et al. (2001) are unable to explain spatial differences i
swan foraging

~ -

Ecological ratlonallty Sunk costs and Iong patc

(Pavllc and Passino 2010b)

tundra
[ In shallow water, swans feeding on tubers can “head dip”
1 In deep water, they must “up end,” which requires more energy

[0 Nolet et al. find no theoretical justification for longer times at
the more energetic tasks

[J Other sunk cost/Concorde effects (Arkes and Blumer 1985;
Arkes and Ayton 1999; Dawkins and Carlisle 1976; Kanodia
et al. 1989; Staw 1981)
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B Nolet et al. (2001) are unable to explain spatial differences i
swan foraging

\\

Ecological ratlonallty Sunk costs and Iong patc

(Pavllc and Passino 2010b)

tundra

[ In shallow water, swans feeding on tubers can “head
1 In deep water, they must “up end,” which requires more energy

[0 Nolet et al. find no theoretical justification for longer times at
the more energetic tasks

[J Other sunk cost/Concorde effects (Arkes and Blumer 1985;
Arkes and Ayton 1999; Dawkins and Carlisle 1976; Kanodia
et al. 1989; Staw 1981)

B Sunk-cost observations are consistent with rate maximization when
patch entry costs are modeled (unconve
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B Cooperative task processing (Pavlic and Passino 2010d)
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B MultilFD constrained gradient descent
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(i.e., sum of binomial products). For conveyor j € ) and cooperator
i€ Cj ={i,k, 0}, SOBP ({3, k, £} — {i}) is the probability that

1 is chosen to process an advertised task from 5 € V/; (given that it

volunteered).
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Preliminaries

B Forg,heNandI' C 7,

T
i
SOBP,(1) = > —— > ( (Llw) | II ¢—w
=0 g |C|§F 1eC kel'-C
C|=¢

mForl' C A SOBP{({i,k, ¢} — {i})is

1

1 1
(1 =) (1 =) + 5%(1 — ) + 5%(1 — ) + Al

(i.e., sum of binomial products). For conveyor j € ) and cooperator
i€ Cj ={i,k, 0}, SOBP ({3, k, £} — {i}) is the probability that

1 is chosen to process an advertised task from 5 € V/; (given that it

volunteered).

B SOMS gives slope and curvature information about SOBP.
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Cooperation gaf‘n\e

Agent utility function: rate of gain

For cooperator ¢ € C, its local rate of gain

Conveyor part — constant with respect to y;

P N . Pr (7 awarded task from 7|7 volunteers)
0:7) £ it (1= [T 0= ) +% Y ( ~SOBRIG — (Do)
Jj€C; JEV;

Pr(Volunteer from C; | Advertisement from ) Cooperator part

Costs and benefits of local processing on ¢ € V:

Costs and benefits to ¢ € C for volunteering for

bi 2 ) A (bF —cf) tasks exported from j € V;:
key; Z )\k:
J 1]
re £ Y Aal (rf — (8F = &f)) iy,

keY;
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Cooperation game

Agent utility function: rate of gain

\\

For cooperator ¢ € C, its local rate of gain

Conveyor part — constant with respect to y;

P N . Pr (7 awarded task from 7|7 volunteers)
Ui(7) = b+ (1 — H (1- ’Yj)>7“z' — Qipi(Qi) + i Z (Pz'j(Qj> SOBPl( {Z})ng)
Jj€C; JEV;

Pr(Volunteer from C; | Advertisement from ) Cooperator part— ~; and Q; vary with ;

Costs and benefits of local processing on ¢ € V:
Costs and benefits to 2 € C for volunteering for
b, & Z N (b,’f B cff) tasks exported from j € V;:
key; A k
A k_k (. k k k A Z )\ J 7"7
ri = Z Ai T (7“7: - (bi _Ci)> k€Y;
k€Y A k_k Kk _k
pii(Q5) £ ) Malglink(Q))
A k
pi(Qi) = Z Ai T pz kel
keYi

Fictitious payment functions added as stabilizing controls (“quantity”
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Cooperation g

Agent utility function: rate of gain

Decreasing-cost

For cooperator ¢ € C, its local rate of gain externality
Conveyprpart — consiant with respect 1o s Pr (i awarded task from 7| volunteers)
Ui (7) = b+ (1 — H (1- ’Yj)>7“z' — Qipi(Qi) + i Z (Pz'j(Qj> SOBPl( {Z})ng)
Jj€C; JEV;

"~ "~

Pr(Volunteer from C; | Advertisement from ) Cooperator part— ~; and Q; vary with ;

Costs and benefits of local processing on ¢ € V:
Cssts and benefits to ¢ € C for volunteering for
b A Z Ak (bk B Ck:) tasks exported from j € V;:
T 7 3 7
key; A k:
A I k I I Cij = Z )\J J zy
Py = Z AT (b- — cz)) k€Y,
. . Cournot ohgm?nohe‘5 pii(Qi) & ) Nimkalpk(Q;)
pi(Qi) = Z A TepE(Q on agrap k€Y,
keY; I

Fictitious payment functions added as stabilizing controls (“quantity” (; = > jec; ;)
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B Totally asynchronous parallel computation of ¥*

Nash equilibrium
Igueness, and asynchronous convergence

by local gradient

ascent

[1 Agents iterate asynchronously.

[J Each agent operates on a possibly outdated copy of 7.

[1 Asynchronous system is described by difference inclusion.

[ It is sufficient to show synchronous transition mapping is a
contraction with respect to maximum nor

= A
([17]lc0 = maxiec{|vil}).

1 A unigue equilibrium exists and is asymptotically stable.
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B Totally asynchronous parallel computation of ¥*
ascent

by local gradient

[1 Agents iterate asynchronously.

[J Each agent operates on a possibly outdated copy of 7.

[1 Asynchronous system is described by difference inclusion.

[ It is sufficient to show synchronous transition mapping is a
contraction with respect to maximum nor

(1700 £ maxice{|vil }):
1 A unigue equilibrium exists and is asymptotically stable.

B Constraints on topology and payment functions ensure contraction.
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Sample stabilizing payment

(inverse-demand)

B Fork €N, p:|0,k] — Ris a stabilizing payment function if

0 p'(Q) = dp(Q)/dQ < Oforall Q € [0, k].
O p"(Q) £ d*p(Q)/dQ? > Oforall Q € [0, k].

0 v"(Q) < —p'(Q)forall @ € [y,k — (1 — )] withy € [0, 1.
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B Fork €N, p:|0,k] — Ris a stabilizing payment function if

0 p'(Q) = dp(Q)/dQ < Oforall Q € [0, k].
O p"(Q) £ d*p(Q)/dQ? > Oforall Q € [0, k].

0 v"(Q) < —p'(Q)forall @ € [y,k — (1 — )] withy € [0, 1.

W Forke{0,1,...,|C
k outgoing connections (i.e., |C;| = k).

}, aconveyor j € Vis called a k-conveyor if it has
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B Letm,n € Nand X € R" equipped with product topology.
B Foreachj € {1,2,...,m},d; € R"and¢; € R.
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(Fretwell 1972; Fretwell and Lucas 1969; Stephens et al. 2007)

Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultilFD: Distributed
gradient descent for .
constrained optimization ¢

Focal problem
Social foraging
Power generation
Intelligent lights
Distributed solver
Simulation

Experiment

Closing remarks

Future directions™®

Engineering Sereridipity

B Habitat in which animals self allocate according to IFD:

0 N € N foragers free to move among n € N locations.

O The ideal forager knows the suitability s;(x;) of each
location 7 € {1,2,...,n} with z; € [0, N] occupants.

[J Suitabilities are monotonically decreasing.

[ Sufficiently small number of foragers continuously move away
from lower suitability toward higher suitability.
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[] Game theoretic analysis of tree distributions

Closing remarks

[] Tree growth as dynamic system

Future directions™

Solitary agents

e T B Game theoretic analysis of energy efficiency bait-and-switch

choice ™

CTPN [] Future pricing plans charge per service rather than/per kW-hour
e [0 Consumer incentive to upgrade to high-efficiency /devices assumes
Future

long-term payoff
[] Long-term payoff vanishes when pricing model changes

[ Few now know of pricing changes
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