Pre-talk food for thought: computational biomimicry

¹Compliments to XKCD: http://xkcd.com/720/.

Doctor of Philosophy

Theodore (Ted) P. Pavlic, B.S., M.S. - The Ohio State University

Department of Electrical and Computer Engineering

Monday, August 9, 2010, 2:30 PM

Dissertation Committee: Dr. Kevin M. Passino (Advisor, ECE), Dr. Andrea Serrani (ECE), Dr. Atilla Eryilmaz (ECE), Dr. David Blau (GS Rep., Economics)

Engineering Serendipity

Overview

Introduction

Manufacturing serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Multi FD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Closing remarks

Future directions*

*Omitted for brevity

Engineering Serendipity

Manufacturing Serendipity

Nakrani and Tovey (2007): honeybees and Internet server allocation

¹Compliments to XKCD: http://xkcd.com/720/.

Manufacturing Serendipity

Craig Tovey: "manufacture serendipity"

¹Compliments to XKCD: http://xkcd.com/720/.

Engineering Manufacturing Serendipity

Cooperative task processing

Introduction

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

WE'VE DECIDED TO DROP THE CS DEPARTMENT FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.

This dissertation: serendipity catalyst

¹Compliments to XKCD: http://xkcd.com/720/.

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Unified framework (Pavlic and Passino 2010c)

Impulsiveness explained^{*} (Pavlic and Passino 2010a)

Optimal sunk-cost effect (Pavlic and Passino 2010b)

*Omitted for brevity

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Engineering Serendipity

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Engineering Serendipity

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

	Int	ro	d	U	Cti	0	n
1			~	~	· · ·	~	

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Homomorphism:

autonomous vehicles

- □ Diversity of tasks (grasshoppers, enemy vehicles, probable underwater mines): $n \in \mathbb{N}$ types
- □ Tasks of type $i \in \{1, 2, ..., n\}$ have average value $g_i(\tau_i)$ for τ_i average time processing
 - Darwinian fitness surrogate (e.g., calories)
 - Economic value (e.g., dollars of profit)
 - Design preference (e.g., threat level)

Bobwhite quail (Gendron and Staddon 1983)

MQ-8 Fire Scout (Northrop Grumman)

or

(Bluefin)

Optimal Task-Processing Agents

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Homomorphism:

autonomous vehicles

- □ Diversity of tasks (grasshoppers, enemy vehicles, probable underwater mines): $n \in \mathbb{N}$ types
- □ Tasks of type $i \in \{1, 2, ..., n\}$ have average value $g_i(\tau_i)$ for τ_i average time processing
 - Darwinian fitness surrogate (e.g., calories)
 - Economic value (e.g., dollars of profit)
 - Design preference (e.g., threat level)
- Opportunity cost: ignore some tasks

Bobwhite quail (Gendron and Staddon 1983)

MQ-8 Fire Scout (Northrop Grumman)

or

(Bluefin)

Engineering Serendipity

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduct	ion
-----------	-----

Solitary optimal
task-processing agents
in biology and
engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Homomorphism:

→ autonomous vehicles

- □ Diversity of tasks (grasshoppers, enemy vehicles, probable underwater mines): $n \in \mathbb{N}$ types
- □ Tasks of type $i \in \{1, 2, ..., n\}$ have average value $g_i(\tau_i)$ for τ_i average time processing
 - Darwinian fitness surrogate (e.g., calories)
 - Economic value (e.g., dollars of profit)
 - Design preference (e.g., threat level)
- Opportunity cost: ignore some tasks
- □ Rate maximization (MVT) for long runs
 - Prey model → Task choice
 - Patch model \mapsto Processing-time choice

Bobwhite quail (Gendron and Staddon 1983)

MQ-8 Fire Scout (Northrop Grumman)

or

Optimal Task-Processing Agents

Optimal task processing for generalized solitary agents (Pavlic and Passino 2010c)

Equivalence class: Homomorphism:

- autonomous vehicles
- □ Diversity of tasks (grasshoppers, enemy vehicles, probable underwater mines): $n \in \mathbb{N}$ types
- □ Tasks of type $i \in \{1, 2, ..., n\}$ have average value $g_i(\tau_i)$ for τ_i average time processing
 - Darwinian fitness surrogate (e.g., calories)
 - Economic value (e.g., dollars of profit)
 - Design preference (e.g., threat level)
- Opportunity cost: ignore some tasks
- □ Rate maximization (MVT) for long runs

 - Patch model \iff Processing-time choice
- □ More general statements available

Bobwhite quail (Gendron and Staddon 1983)

MQ-8 Fire Scout (Northrop Grumman)

Optimal Task-Processing Agents

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Autonomous vehicle faces n-way merged Poisson process

 $\ \square \ \lambda_i$: encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

 \square p_i : probability that type-*i* task is processed (decision variable)

 \Box c^s : cost per-unit-time of searching

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Autonomous vehicle faces n-way merged Poisson process

 $\Box \ \lambda_i$: encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

 \square p_i : probability that type-*i* task is processed (decision variable)

 \Box c^s : cost per-unit-time of searching

Vehicle goes through i.i.d. cycles of searching and processing

- \Box \bar{G} : average per-encounter gain
- \Box $\langle T :$ average per-encounter search and processing time
- $\Box \mathcal{G}(t)$: Markov renewal–reward process for accumulated gain

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Autonomous vehicle faces n-way merged Poisson process

 $\Box \ \lambda_i$: encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

 \square p_i : probability that type-*i* task is processed (decision variable)

 $\Box c^s$: cost per-unit-time of searching

Long runtime \implies maximize rate of return (i.e., gain \uparrow & cycles \uparrow)

$$\operatorname*{aslim}_{t \to \infty} \frac{\mathcal{G}(t)}{t} = \frac{\bar{G}}{\bar{T}} = \frac{-c^s + \sum_{i=1}^n \lambda_i p_i g_i}{1 + \sum_{i=1}^n \lambda_i p_i \tau_i} \triangleq R(\vec{p})$$

Maximum rate $R(\vec{p}^*)$ is an *opportunity cost*; it represents the minimum gain from an activity to justify its use of time.

(Andrews et al/ 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Autonomous vehicle faces n-way merged Poisson process

 $\Box \ \lambda_i$: encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

 \square p_i : probability that type-*i* task is processed (decision variable)

 \Box c^s : cost per-unit-time of searching

In general, $p_i \in [0,1]$, but

$$\frac{\partial R(\vec{p})}{\partial p_i} = \frac{\lambda_i g_i \left(1 + \sum_{j=1}^n \lambda_j p_j \tau_j\right) - \lambda_i \tau_i \left(-c^s + \sum_{j=1}^n \lambda_j p_j g_j\right)}{\left(1 + \sum_{i=1}^n \lambda_i p_i \tau_i\right)^2}$$

(Andrews et al. 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

- Finite-event scenario Impulsiveness and operant conditioning*
- Sunk-cost effect
- Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Autonomous vehicle faces n-way merged Poisson process

 $\Box \ \lambda_i$: encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

- $\Box p_i$: probability that type-*i* task is processed (decision variable)
- $\Box c^s$: cost per-unit-time of searching

So KKT reveals optimization is 2^n combinatorial:

 $\begin{bmatrix}
\nabla_{i} = 0 \\
\rightarrow \lambda_{i}g_{i}\left(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}\tau_{j}\right) - \lambda_{i}\tau_{i}\left(-c^{s} + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j}\right) \\
\frac{\partial R(\vec{p})}{\partial p_{i}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{i}p_{i}\tau_{i})^{2}}{\left(1 + \sum_{\substack{i=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{i}p_{i}\tau_{i})^{2}}{\left(1 + \sum_{\substack{i=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{i}p_{i}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{i}\right)^{2}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{i}\right)^{2}}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}g_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{i}\right)^{2}}} = \frac{(1 + \sum_{\substack{j=1\\ j\neq i}}^{n} \lambda_{j}p_{j}\tau_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j}\right)^{2}}} = \frac{(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j}\right)^{2}}} = \frac{(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j}\right)^{2}}} = \frac{(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j}\right)^{2}}} = \frac{(1 + \sum_{\substack{j=1\\ i=1}}^{n} \lambda_{j}p_{j}\tau_{j})}{\left(1 + \sum_{\substack{j=1\\ i=1}^{n} \lambda_{j}p_{j}\tau_{j}\right)^{2}}}} = \frac{(1 + \sum_{\substack{j=1\\ i=1}^{n} \lambda_{j}p_{j}\tau_{j}})}{\left(1 + \sum_{\substack{j=1\\ i=1}^{n} \lambda_{j}p_{j}\tau_{j}\right)^{2}}}}$

Property called the *zero–one rule* because $\exists \vec{p}^* : p_i^* \in \{0, 1\}$.

Optimal Task-Processing Agents

(Andrews et al/ 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Autonomous vehicle faces n-way merged Poisson process

 \Box λ_i : encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

 \Box p_i : probability that type-*i* task is processed (decision variable)

 $\Box c^s$: cost per-unit-time of searching

Classical prey ranking refines 2^n search to n+1 search:

where optimal $p_i^* = [i \leq k^*]$ with $k^* \in \{0, 1, \dots, n\}$.

Optimal Task-Processing Agents

(Andrews et al/ 2004; Charnov 1973; Quijano et al. 2006; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Autonomous vehicle faces n-way merged Poisson process

 $\Box \ \lambda_i$: encounter rate for task of type i

 \Box $(g_i \triangleq g_i(\tau_i), \tau_i)$: mean (value, time) per type-*i* processing

 \square p_i : probability that type-*i* task is processed (decision variable)

 $\Box c^s$: cost per-unit-time of searching

Classical prey ranking refines 2^n search to n+1 search:

Behavioral heuristic for encounter ℓ at time $t(\ell)$

$$p_{i(\ell)} = \left[\frac{g_{i(\ell)}}{\tau_{i(\ell)}}\right]$$

$$> \frac{\mathcal{G}(t(\ell))}{t(\ell)}
ight]$$

(Iverson bracket)

can calculate rate-maximizing prey choice in real time without sorting and searching (Pavlic and Passino 2010a).

Foreshadowing

 g_1

 au_1

whe

Advantage-to-disadvantage optimization for $n \in \mathbb{N}$ task types (Pavlic and Passino 2010c)

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prev model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Generalized autonomous agent faces $n \in \mathbb{N}$ types of tasks

 $\Box \ p_i \in [p_i^-, p_i^+] \subseteq [0, 1]: \text{ decision variable}$ $\Box \ \tau_i \in [\tau_i^-, \tau_i^+] \subseteq \overline{R}_{\geq 0}: \text{ decision variable}$ $\Box \ a_i, d_i : [\tau_i^-, \tau_i^+] \mapsto \mathbb{R}: \text{ type } i \text{ (dis)advantage } a_i(\tau_i) (d_i(\tau_i))$ $\Box \ a, d \in \mathbb{R}: \text{ background environmental (dis)advantage}$

Advantage-to-disadvantage optimization for $n \in \mathbb{N}$ task types (Pavlic and Passino 2010c)

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles

and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

I Generalized autonomous agent faces $n \in \mathbb{N}$ types of tasks

 $\Box \ p_i \in [p_i^-, p_i^+] \subseteq [0, 1]: \text{ decision variable}$ $\Box \ \tau_i \in [\tau_i^-, \tau_i^+] \subseteq \overline{R}_{\geq 0}: \text{ decision variable}$ $\Box \ a_i, d_i : [\tau_i^-, \tau_i^+] \mapsto \mathbb{R}: \text{ type } i \text{ (dis)advantage } a_i(\tau_i) (d_i(\tau_i))$ $\Box \ a, d \in \mathbb{R}: \text{ background environmental (dis)advantage}$

Generalized advantage-to-disadvantage objective:

maximize $J(\vec{p}, \vec{\tau}) \triangleq \frac{a + \sum_{i \neq 1}^{n} p_i a_i(\tau_i)}{\sqrt{n}}$

Form generalized prey/patch algorithms for special $\{a, a_1, \ldots, a_n, d, d_1, \ldots, d_n\}$ cases.

Engineering Serendipity

Optimal Task-Processing Agents

 $d + \sum_{i=1} p_i d_i(au_i)$

Generalized prey model for $n \in \mathbb{N}$ task types (Pavlic and Passino 2010c)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions *

Generalized autonomous agent faces $n \in \mathbb{N}$ types of tasks

 $\Box \ p_i \in [p_i^-, p_i^+] \subseteq [0, 1]: \text{ decision variable}$ $\Box \ \tau_i \in [\tau_i^-, \tau_i^+] \subseteq \overline{R}_{\geq 0}: \text{ decision variable}$ $\Box \ a_i, d_i : [\tau_i^-, \tau_i^+] \mapsto \mathbb{R}: \text{ type } i \text{ (dis)advantage } a_i(\tau_i) \text{ (} d_i(\tau_i)\text{)}$ $\Box \ a, d \in \mathbb{R}: \text{ background environmental (dis)advantage}$

I Generalized prey algorithm: $d_i(au_i) \equiv d_i
eq 0$ non-zero constant

Optimal $\tau_i^* = \underset{\tau_i \in [\tau_i^-, \tau_i^+]}{\operatorname{arg\,max}} \frac{a_i(\tau_i)}{d_i(\tau_i)}$

Optimal $p_i^* \in \{p_i^-, p_i^+\}$

(Max profitability)

(Extreme-preference rule)

for each type $i \in \{1, 2, \ldots, n\}$.

Generalized prey model for $n \in \mathbb{N}$ task types (Pavlic and Passino 2010c)

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prev model Advantage-todisadvantage functions Finite-event scenario Impulsiveness and operant conditioning* Sunk-cost effect Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Closing remarks Future directions*

Engineering Serendipity

Generalized autonomous agent faces $n \in \mathbb{N}$ types of tasks $\Box p_i \in [p_i^-, p_i^+] \subseteq [0, 1]: \text{ decision variable}$ $\Box \tau_i \in [\tau_i^-, \tau_i^+] \subseteq \overline{R}_{\geq 0}: \text{ decision variable}$ $\Box a_i, d_i : [\tau_i^-, \tau_i^+] \mapsto \mathbb{R}: \text{ type } i \text{ (dis)advantage } a_i(\tau_i) (d_i(\tau_i))$ $\Box a, d \in \mathbb{R}: \text{ background environmental (dis)advantage}$

Generalized profitability ranking ((n+1) search):

$$\underbrace{\frac{a_{1}(\tau_{1}^{*})}{a_{1}(\tau_{1}^{*})} > \cdots > \frac{a_{k^{*}}(\tau_{k^{*}}^{*})}{d_{k^{*}}(\tau_{k^{*}}^{*})} > \underbrace{\frac{a_{k^{*}}(\tau_{k^{*}}^{*})}{a + \sum_{i=1}^{n} p_{i}^{k^{*}} a_{i}(\tau_{i}^{*})}}_{d + \sum_{i=1}^{n} p_{i}^{k^{*}} d_{i}(\tau_{i}^{*})} > \underbrace{\frac{a_{k^{*}+1}(\tau_{k^{*}+1}^{*})}{a_{k^{*}+1}(\tau_{k^{*}+1}^{*})} > \cdots > \frac{a_{n}(\tau_{n}^{*})}{d_{n}(\tau_{n}^{*})}}_{d_{n}(\tau_{n}^{*})}}$$
where $p_{i}^{k} \triangleq [i \le k]p_{i}^{+} + [i > k]p_{i}^{-}$ and $k^{*} \in \{0, 1, \dots, n\}$.

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prey model Advantage-todisadvantage functions Finite-event scenario

Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization.

Closing remarks

Future directions*

Engineering Serendipity

Generalized autonomous agent faces $n \in \mathbb{N}$ types of lumped tasks

$$\Box \ \tau_i^* = \tau_i^- = \tau_i^+ \text{ for all } i \in \{1, 2, \dots, n\}$$
$$\Box \ [p_i^-, p_i^+] = [0, 1] \text{ for all } i \in \{1, 2, \dots, n\}$$

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prey model Advantage-todisadvantage functions Finite-event scenario

Impulsiveness and operant conditioning* Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization.

Closing remarks

Future directions*

Engineering Serendipity

Generalized autonomous agent faces $n \in \mathbb{N}$ types of lumped tasks

$$\Box \ \tau_i^* = \tau_i^- = \tau_i^+ \text{ for all } i \in \{1, 2, \dots, n\}$$
$$\Box \ [p_i^-, p_i^+] = [0, 1] \text{ for all } i \in \{1, 2, \dots, n\}$$

Payload only supports $N \in \mathbb{N}$ tasks serviced

 $\hfill\square$ N packages (food, artillery) to deploy

 $\Box N$ eggs to oviposit (e.g., parasitoid oviposition)

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prey model Advantage-todisadvantage functions Finite-event scenario

Impulsiveness and operant conditioning*

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization.

Closing remarks

Future directions*

Engineering Serendipity

Generalized autonomous agent faces $n \in \mathbb{N}$ types of lumped tasks

$$\Box \ \tau_i^* = \tau_i^- = \tau_i^+ \text{ for all } i \in \{1, 2, \dots, n\}$$
$$\Box \ [p_i^-, p_i^+] = [0, 1] \text{ for all } i \in \{1, 2, \dots, n\}$$

- Payload only supports $N \in \mathbb{N}$ tasks serviced
 - $\hfill N$ packages (food, artillery) to deploy
 - $\hfill\square$ N eggs to oviposit (e.g., parasitoid oviposition)
- Delta Objective: Accumulate $G^T \in \mathbb{R}$ value by end-of-life
 - □ Threshold for mission to be considered success
 - Threshold for genes proliferation/survival to next/foraging bout/

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning* Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Generalized autonomous agent faces $n \in \mathbb{N}$ types of lumped tasks

$$\Box \ \tau_i^* = \tau_i^- = \tau_i^+ \text{ for all } i \in \{1, 2, \dots, n\}$$
$$\Box \ [p_i^-, p_i^+] = [0, 1] \text{ for all } i \in \{1, 2, \dots, n\}$$

Payload only supports $N \in \mathbb{N}$ tasks serviced

 $\hfill N$ packages (food, artillery) to deploy

 \Box N eggs to oviposit (e.g., parasitoid oviposition)

I Objective: Accumulate $G^T \in \mathbb{R}$ value by end-of-life

□ Threshold for mission to be considered success

□ Threshold for genes proliferation/survival to next/foraging bout/

Rate maximization assumptions not valid for this case

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prey model Advantage-todisadvantage functions Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Static alternative to stochastic dynamic programming:

maximize $J(\vec{p}, \vec{\tau}) \triangleq \frac{\mathrm{E}(\mathcal{G}(T^N)) - G^T}{\mathrm{E}(T^N)}$ ("Excess rate") $= \frac{-c^s + \sum_{i=1}^n \lambda_i p_i \left(g_i(\tau_i) - \frac{G^T}{N}\right)}{1 + \sum_{i=1}^n \lambda_i p_i \tau_i}$

where $T^N \triangleq$ (time after N^{th} processed task).

Introduction

Solitary optimal task-processing agents in biology and engineering Autonomous vehicles and foraging Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization.

Closing remarks

Future directions*

Static alternative to stochastic dynamic programming:

maximize $J(\vec{p}, \vec{\tau}) \triangleq \frac{\mathrm{E}(\mathcal{G}(T^{N})) - G^{T}}{\mathrm{E}(T^{N})}$ ("Excess rate")

where $T^N \triangleq (\text{time after } N^{\text{th}} \text{ processed task}).$

Generalized profitability for $i \in \{1, 2, \dots, n\}$:

Ranking depends on success threshold G^T (matches SDP).

 $\frac{a_i(\tau_i^*)}{d_i(\tau_i^*)} \triangleq \frac{g_i(\tau_i^*) - \frac{G^*}{N}}{\tau_i^*}$

 $=\frac{-c^{s}+\sum_{i=1}^{n}\lambda_{i}p_{i}\left(g_{i}(\tau_{i})-\frac{G^{T}}{N}\right)}{1+\sum_{i=1}^{n}\lambda_{i}p_{i}\tau_{i}}$

Engineering Serendipity

Introduction

Solitary optimal

task-processing agents in biology and

engineering

Autonomous vehicles

and foraging

Prey model

Advantage-to-

disadvantage functions

Tunctions

Finite-event scenario

Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

$n=5$ task types, $N=300$ tasks per mission, 100 Monte Carlo samples (mean \pm SEM)								
000		Take all	Classical	Excess	estClassical	estExcess		
6	$\mathcal{G}(T^N)$:	16565 ± 30	10946 ± 16	$\overline{20473\pm25}$	$\overline{11218 \pm 128}$	18119 ± 38		
Ŀ	$\geq G^T$:	100%	100%	100%	98%	100%		
9	T^N :	11119 ± 42	4391 ± 8	9227 ± 13	4567 ± 63	11668 ± 43		
= 13500		Take all	Classical	Excess	estClassical	estExcess		
	$\mathcal{G}(T^N)$: $\geq G^T$:	16642 ± 33	10958 ± 16	25153 ± 11	11270 ± 103	18647 ± 44		
		100%	0%	100%	5%	100%		
Г		100/0	• / •		• / •	/ /		
G^T	T^N :	11158 ± 38	4393 ± 8	15645 ± 42	4586 ± 50	12779 ± 46		
$500 G^T$	T^N :	$\frac{11158 \pm 38}{\text{Take all}}$	4393 ± 8 Classical	$\frac{15645 \pm 42}{\text{Excess}}$	4586 ± 50 estClassical	$\frac{12779 \pm 46}{\text{estExcess}}$		
$: 16500 \left G^T \right $	T^N : $\mathcal{G}(T^N)$:	$\frac{11158 \pm 38}{\text{Take all}}$ $\frac{11158 \pm 38}{16546 \pm 34}$	$ \begin{array}{r} 4393 \pm 8 \\ \hline Classical \\ \hline 10993 \pm 16 \\ \hline \end{array} $	$\frac{15645 \pm 42}{\text{Excess}}$ $\frac{25141 \pm 14}{25141 \pm 14}$	4586 ± 50 estClassical 10965 ± 91	$\frac{12779 \pm 46}{\text{estExcess}}$ $\frac{18796 \pm 39}{18796 \pm 39}$		
$= 16500 \left G^T \right $	$\begin{array}{c} - \\ T^{N} \\ \vdots \\ \mathcal{G}(T^{N}) \\ \vdots \\ \geq G^{T} \\ \vdots \end{array}$	$\frac{11158 \pm 38}{\text{Take all}}$ $\frac{16546 \pm 34}{\text{55\%}}$	4393 ± 8 Classical 10993 ± 16 0%	$\frac{15645 \pm 42}{\text{Excess}}$ $\frac{25141 \pm 14}{100\%}$	4586 ± 50 estClassical 10965 ± 91 0%	12779 ± 46 estExcess 18796 ± 39 100%		
$G^T = 16500 \left \begin{array}{c} G^T \end{array} \right $	$ \begin{array}{c} - \\ T^{N} \\ \vdots \\ \mathcal{G}(T^{N}) \\ \vdots \\ \mathcal{G}^{T} \\ T^{N} \\ \vdots \end{array} $	11158 ± 38 Take all 16546 ± 34 55% 11092 ± 40	$ \begin{array}{r} 4393 \pm 8 \\ \hline Classical \\ 10993 \pm 16 \\ 0\% \\ 4421 \pm 8 \end{array} $	$\frac{15645 \pm 42}{\text{Excess}}$ $\frac{25141 \pm 14}{100\%}$ 15605 ± 53	$ \begin{array}{r} 4586 \pm 50 \\ \underline{ estClassical} \\ 10965 \pm 91 \\ \underline{ 0\%} \\ 4440 \pm 43 \\ \end{array} $	$\frac{12779 \pm 46}{\text{estExcess}}$ $\frac{18796 \pm 39}{100\%}$ 13120 ± 44		
$\begin{array}{c c} \hline \gamma & \\ \hline \gamma & \\ \hline \end{array} = 16500 G^T \end{array}$	$ \begin{array}{c} - \\ T^{N}: \\ \end{array} \\ \mathcal{G}(T^{N}): \\ \geq G^{T}: \\ T^{N}: \\ \end{array} \\ \overline{f}, g_{1}, \tau_{1}) = \end{array} $	11158 ± 38 Take all 16546 ± 34 55% 11092 ± 40 = (0.5, 30, 10),	$ \begin{array}{r} 4393 \pm 8 \\ \hline Classical \\ \overline{10993 \pm 16} \\ 0\% \\ 4421 \pm 8 \\ (\lambda_2, g_2, \tau_2) = \end{array} $	15645 ± 42 Excess 25141 ± 14 100% 15605 ± 53 $(0.25, 50, 20)$	4586 ± 50 estClassical 10965 ± 91 0% 4440 ± 43 $\lambda, (\lambda_3, g_3, \tau_3) =$	12779 ± 46 estExcess 18796 ± 39 100% 13120 ± 44 (0.4, 80, 35),		

Take high gain only: 29700 (36000 time)

Take high profitability only: 8940 (3600 time)

I Take high excess profitability only: 23925 (11250 time)

Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage

functions

Finite-event scenario

Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Ecological rationality: operant laboratory impulsiveness*

(Pavlic and Passino 2010a)

*Omitted for brevity

Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Laboratory impulsiveness (Ainslie 1974; Bateson and Kacelnik 1996; Bradshaw and Szabadi 1992; Green et al. 1981; McDiarmid and Rilling 1965; Rachlin and Green 1972; Siegel and Rachlin 1995; Snyderman 1983; Stephens and Anderson 2001)

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Laboratory impulsiveness

Using starvation, animals are trained to use a Skinner box

Repeat mutually exclusive binary-choice trials (at low weight)

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Laboratory impulsiveness

Using starvation, animals are trained to use a Skinner box

Repeat mutually exclusive binary-choice trials (at low weight)

What can be inferred about Skinner box results?

 Violates assumption that simultaneous encounters occur with probability zero (Poisson assumption)

□ Mutually exclusive choice unlikely when prey is immobile

□ Impulsiveness vanishes for patch decision (Stephens et al. 2004)

□ Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Laboratory impulsiveness

Using starvation, animals are trained to use a Skinner box

Repeat mutually exclusive binary-choice trials (at low weight)

What can be inferred about Skinner box results?

 Violates assumption that simultaneous encounters occur with probability zero (Poisson assumption)

□ Mutually exclusive choice unlikely when prey is immobile

□ Impulsiveness vanishes for patch decision (Stephens et al. 2004)

□ Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

Skinner trials are worst-case scenario for a robot

Predisposes robots to underestimate (adds suboptimal eq.)

Engineering Serendipity
Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Laboratory impulsiveness

Using starvation, animals are trained to use a Skinner box

Repeat mutually exclusive binary-choice trials (at low weight)

What can be inferred about Skinner box results?

 Violates assumption that simultaneous encounters occur with probability zero (Poisson assumption)

□ Mutually exclusive choice unlikely when prey is immobile

□ Impulsiveness vanishes for patch decision (Stephens et al. 2004)

□ Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

Skinner trials are worst-case scenario for an animal?

□ Predisposes animals to underestimate? (adds suboptimal eq.)

Engineering Serendipity

Engineering Serendipity

Optimal Task-Processing Agents

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Craphical description of antimal prov abaias:

□ Digestive rate constraints (b_i : prey bulk) (Hirakawa 1995):

$$\frac{\sum\limits_{i=1}^{n}\lambda_{i}p_{i}b_{i}}{1+\sum\limits_{i=1}^{n}\lambda_{i}p_{i}\tau_{i}} \leq B \qquad \stackrel{\mathrm{KK}}{=}$$

$$p_1^* = 1$$

:
 $p_{k^*-1}^* = 1$
 $p_{k^*}^* \in [0, 1]$

Partial Preferences (rank by g_i/b_i)

Engineering Serendipity

Introduction decoription of optimal prov Solitary optimal task-processing agents Ecological-physiological hybrid method (Whelan and Brown 2005): in biology and engineering Autonomous vehicles Asymptotic gut constraint \iff Rank by $\frac{g_i}{\tau_i + \tau_i^b}$ and foraging Prev/model Advantage-todisadvantage functions Finite/event scenario Impulsiveness and operant conditioning* Sunk-cost effect Cooberative task processing MultiIFD: Distributed gradient descent for constrained optimization Closing remarks Future directions* Digression

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Craphical description of optimal provideo:

□ Ecological–physiological hybrid method (Whelan and Brown 2005):

Asymptotic gut constraint

 $\iff \quad \text{Rank by } \frac{g_i}{\tau_i + \tau_i^b}$

□ Process encounter k when $g_{i(k)}/(\tau_{i(k)} + \tau_{i(k)}^{b}) > \mathcal{G}(t(k))/t(k)$

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

decorintion of optimal prov Ecological-physiological hybrid method (Whelan and Brown 2005): Rank by $\frac{g_i}{\tau_i + \tau_i^b}$ Asymptotic gut constraint \iff Process encounter k when $g_{i(k)}/(\tau_{i(k)} + \tau_{i(k)}^{b}) > \mathcal{G}(t(k))/t(k)$ Type-# encounter: # (Process) or # (Ignore) Proportion of encounters accepted gain **Partial** 0.75 $\mathcal{J}(t)$: Accumulated net Preferences 0.500.25Types (ordered by digestive profitability) t: Search and non-ballast handling time Digression

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

decoription of optimal prov Ecological-physiological hybrid method (Whelan and Brown 2005): \iff Rank by $\frac{g_i}{\tau_i + \tau_i^b}$ Asymptotic gut constraint Process encounter k when $g_{i(k)}/(\tau_{i(k)} + \tau_{i(k)}^{b}) > \mathcal{G}(t(k))/t(k)$ Type-# encounter: # (Process) or # (Ignore) Digestive profitability line for type gain Accumulated net gain Sliding $\mathcal{J}(t)$: Accumulated net Mode Handling and search time (no ballast time) t: Search and non-ballast handling time Digression

Engineering Serendipity

Engineering Serendipity

Engineering Serendipity

Engineering Serendipity

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Ecological rationality: sunk-cost effects and long patch residence times

(Pavlic and Passino 2010b)

Introduction/

Solitary optimal task-processing agents in biology and engineering Autónomous vehicles and foraging Prey model Advantage-todisadvantage functions Finite-event scenario Impulsiveness and operant conditioning* Sunk-cost effect Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging

Engineering Serendipity

Introduction/

Solitary optimal
task-processing agents
in biology and
engineering
Autonomous vehicles

and foraging

Prey model

Advantage-todisadvantage functions

Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging

□ In shallow water, swans feeding on tubers can "head dip"

□ In deep water, they must "up end," which requires more energy

 Nolet et al. find no theoretical justification for longer times at the more energetic tasks

Optimal Task-Processing Agents

Engineering Serendipity

Introduction/

Solitary optimal task-processing agents in biology and engineering
Autonomous vehicles and foraging
Advantage-to- disadvantage functions
Finite-event scenario Impulsiveness and operant conditioning*
Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging

□ In shallow water, swans feeding on tubers can "head dip"

□ In deep water, they must "up end," which requires more energy

Nolet et al. find no theoretical justification for longer times at the more energetic tasks

 Other sunk cost/Concorde effects (Arkes and Blumer 1985; Arkes and Ayton 1999; Dawkins and Carlisle 1976; Kanodia et al. 1989; Staw 1981)

Introduction/

Solitary optimal task-processing agents in biology and engineering
Autonomous vehicles and foraging
Prey model
Advantage-to- disadvantage functions
Finite-event scenario
Impulsiveness and operant conditioning*
Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging

□ In shallow water, swans feeding on tubers can "head dip"

□ In deep water, they must "up end," which requires more energy

Nolet et al. find no theoretical justification for longer times at the more energetic tasks

 Other sunk cost/Concorde effects (Arkes and Blumer 1985; Arkes and Ayton 1999; Dawkins and Carlisle 1976; Kanodia et al. 1989; Staw 1981)

Sunk-cost observations are consistent with rate maximization when patch entry costs are modeled (unconventional).

Engineering Serendipity

Introduction/

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

- Advantage-todisadvantage functions
- Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

- Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging
- Sunk-cost observations are consistent with rate maximization when patch entry costs are modeled (unconventional). For n = 1,

Introduction/

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

- Advantage-todisadvantage functions
- Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

- Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging
- Sunk-cost observations are consistent with rate maximization when patch entry costs are modeled (unconventional). For n = 1,

$$R(\tau_{1}) = \frac{g_{1}(\tau_{1})}{\frac{1}{\lambda_{1}} + \tau_{1}} \quad \text{where} \quad \{a < b < c\} \triangleq |g_{1}(0) < 0$$

Due to entry costs, searching is a less desirable task.

Engineering Serendipity

Introduction/

Solitary optimal task-processing agents in biology and engineering

- Autonomous vehicles and foraging
- Prey model
- Advantage-todisadvantage functions
- Finite-event scenario Impulsiveness and operant conditioning*
- Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

- Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging
- Sunk-cost observations are consistent with rate maximization when patch entry costs are modeled (unconventional). For n = 1,

$$R(\tau_{1}) = \frac{g_{1}(\tau_{1})}{\frac{1}{\lambda_{1}} + \tau_{1}} \quad \text{where} \quad \{a < b < c\} \triangleq |g_{1}(0) < 0|$$

Due to entry costs, searching is a less desirable task.

Engineering Serendipity

Introduction/

Solitary optimal task-processing agents in biology and engineering

Autonomous vehicles and foraging

Prey model

- Advantage-todisadvantage functions
- Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

- Nolet et al. (2001) are unable to explain spatial differences in tundra swan foraging
- Sunk-cost observations are consistent with rate maximization when patch entry costs are modeled (unconventional). For n = 1,

$$R(\tau_{1}) = \frac{g_{1}(\tau_{1})}{\frac{1}{\lambda_{1}} + \tau_{1}} \quad \text{where} \quad \{a < b < c\} \triangleq |g_{1}(0) < 0|$$

Due to entry costs, searching is a less desirable task.

May explain some overstaying as well (Nonacs 2001)

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

- Autonomous vehicles and foraging
- Prey model
- Advantage-to-
- disadvantage functions
- Finite-event scenario Impulsiveness and operant conditioning*

Sunk-cost effect

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Distributed task processing

Cooperative task processing (Pavlic and Passino 2010d)

□ Separable constraints (Cartesian product)

□ Parallel Nash equilibrium solver

MultiIFD constrained gradient descent

Polyhedral constraint set

Distributed Pareto equilibrium solver

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

- Cooperative patrol Flexible manufacturing system
- Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Cooperative task processing

(Pavlic and Passino 2010d)

Cute slide

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system Game: preliminaries* Game: Utility function Parallel Nash solver Definitions Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Example TPN: Cooperative breedingCute slide

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system Game: preliminaries* Game: Utility function Parallel Nash solver Definitions Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Rennett Stowe

Cooperative breeding (Hamilton and Taborsky 2005)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system Game: preliminaries* Game: Utility function Parallel Nash solver Definitions Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Cooperative breeding (Waite and Strickland 1997)

Introduction

Solitary optimal task-processing agents in biology and engineering © Josh Laverty

Chris J. Fry

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system Game: preliminaries* Game: Utility function Parallel Nash solver Definitions Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

(Axelrod 1984; Hamilton 1964; Nowak 2006; Ohtsuki et al. 2006; Trivers 1971)

Engineering Serendipity

(Axelrod 1984; Hamilton 1964; Nowak 2006; Ohtsuki et al. 2006; Trivers 1971)

Engineering Serendipity

(Axelrod 1984; Hamilton 1964; Nowak 2006; Ohtsuki et al. 2006; Trivers 1971)

Engineering Serendipity

(Axelrod 1984; Hamilton 1964; Nowak 2006; Ohtsuki et al. 2006; Trivers 1971)

Engineering Serendipity

(Axelrod 1984; Hamilton 1964; Nowak 2006; Ohtsuki et al. 2006; Trivers 1971)

Example TPN: Cooperative breeding (Pavlic and Passino 2010d)

© Josh Laverty Solitary optimal task-processing agents Cooperative task Cooperative breeding Cooperative patrol Flexible manufacturing Game: preliminaries* Game: Utility function Parallel Nash solver 3 MultiIFD: Distributed Chris J. Fry gradient descent for constrained optimization David Closing remarks Blaiki

Optimal Task-Processing Agents

Rennett Stowe

Engineering Serendipity

Introduction

in biology and engineering

processing

system

Definitions

Algorithm

Results

Assumptions

Future directions*

(Finke and Passino 2007; Finke et al. 2006; Gil et al. 2008)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing

system Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Example AAV Application:

Three MQ-8 Firescouts on patrol

Example TPN: Cooperative patrol (Pavlic and Passino 2010d)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

I \sim Cooperative breeding: breeder f 1 and helpers 2 and f 3

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing

system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

 \sim Social foraging: *producer* 1 and *scroungers* 2 and 3 (Giraldeau and Caraco 2000; Stephens and Krebs 1986)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing

system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Task-processing network (TPN): conveyor 1 and cooperators 2 and 3

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Task-processing network (TPN): *conveyor* 1 and *cooperators* 2 and 3

W/C

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol

Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Each can be both conveyor and cooperator simultaneously

Example TPN: Eusocial breeders?

Future directions*

Engineering Serendipity

Flexible manufacturing system (Cruz 1991; Perkins and Kumar 1989)

Engineering Serendipity

Cooperation game Preliminaries*

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding Cooperative patrol Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Let

 $\Box \ \mathcal{I} \subseteq \mathcal{A} \subset \mathbb{N}: \text{ finite index set}$ $\Box \ \Omega \triangleq \{\gamma_i\}_{i \in \mathcal{I}}: \text{ indexed family with } \gamma_i \in [0, 1] \text{ for each } i \in \mathcal{I}$ For $g, h \in \mathbb{N}$ and $\Gamma \subseteq \mathcal{I}$, define SOBP and SOMS so

$$\begin{aligned} & \operatorname{SOBP}_{g}(\Gamma) \triangleq \sum_{\ell=0}^{|\Gamma|} \frac{1}{g+\ell} \sum_{\substack{\mathcal{C} \subseteq \Gamma \\ |\mathcal{C}|=\ell}} \left(\left(\prod_{i \in \mathcal{C}} \gamma_{i} \right) \left(\prod_{k \in \Gamma-\mathcal{C}} (1-\gamma_{k}) \right) \right) \\ & \operatorname{SOMS}_{h}(\Gamma) \triangleq \sum_{\ell=0}^{|\Gamma|} (-1)^{\ell} \frac{1}{h+\ell} \sum_{\substack{\mathcal{C} \subseteq \Gamma \\ |\mathcal{C}|=\ell}} \left(\prod_{i \in \mathcal{C}} \gamma_{i} \right). \end{aligned}$$

Properties of SOBP and SOMS provide bounds for convergence analysis (i.e., Lyapunov/non-deterministic set stability).

Cooperation game Preliminaries*

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding Cooperative patrol Flexible manufacturing system
- Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

For $g,h\in\mathbb{N}$ and $\Gamma\subseteq\mathcal{I}$,

$$\operatorname{SOBP}_{g}(\Gamma) \triangleq \sum_{\ell=0}^{|\Gamma|} \frac{1}{g+\ell} \sum_{\substack{\mathcal{C} \subseteq \Gamma \\ |\mathcal{C}|=\ell}} \left(\left(\prod_{i \in \mathcal{C}} \gamma_{i} \right) \left(\prod_{k \in \Gamma-\mathcal{C}} (1-\gamma_{k}) \right) \right)$$

■ For $\Gamma \subseteq \mathcal{A}$, $\mathrm{SOBP}_1(\{i,k,\ell\}-\{i\})$ is

$$(1-\gamma_k)(1-\gamma_\ell) + \frac{1}{2}\gamma_k(1-\gamma_\ell) + \frac{1}{2}\gamma_\ell(1-\gamma_k) + \frac{1}{3}\gamma_k\gamma_\ell$$

(i.e., sum of binomial products). For conveyor $j \in \mathcal{V}$ and cooperator $i \in C_j = \{i, k, \ell\}$, SOBP₁($\{i, k, \ell\} - \{i\}$) is the probability that i is chosen to process an advertised task from $j \in \mathcal{V}_i$ (given that it volunteered).

Cooperation game Preliminaries*

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding Cooperative patrol Flexible manufacturing system
- Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

For $g,h\in\mathbb{N}$ and $\Gamma\subseteq\mathcal{I}$,

$$\operatorname{SOBP}_{g}(\Gamma) \triangleq \sum_{\ell=0}^{|\Gamma|} \frac{1}{g+\ell} \sum_{\substack{\mathcal{C} \subseteq \Gamma \\ |\mathcal{C}|=\ell}} \left(\left(\prod_{i \in \mathcal{C}} \gamma_{i} \right) \left(\prod_{k \in \Gamma-\mathcal{C}} (1-\gamma_{k}) \right) \right)$$

■ For $\Gamma \subseteq \mathcal{A}$, $\mathrm{SOBP}_1(\{i,k,\ell\}-\{i\})$ is

$$(1 - \gamma_k)(1 - \gamma_\ell) + \frac{1}{2}\gamma_k(1 - \gamma_\ell) + \frac{1}{2}\gamma_\ell(1 - \gamma_k) + \frac{1}{3}\gamma_k\gamma_\ell$$

(i.e., sum of binomial products). For conveyor $j \in \mathcal{V}$ and cooperator $i \in C_j = \{i, k, \ell\}$, SOBP₁($\{i, k, \ell\} - \{i\}$) is the probability that i is chosen to process an advertised task from $j \in \mathcal{V}_i$ (given that it volunteered).

I SOMS gives slope and curvature information about \underline{SOBP} .

Cooperation game Agent utility function: rate of gain

Engineering Serendipity

Cooperation game Agent utility function: rate of gain

For cooperator $i \in \mathcal{C}$, its local rate of gain

$$\begin{aligned} & \text{Conveyor part - constant with respect to } \gamma_i \\ & \text{Pr}(i \text{ awarded task from } j | i \text{ volunteers}) \\ & \text{Pr}(i \text{ awarded task from } j | i \text{ volunteers}) \\ & \text{Pr}(i \text{ awarded task from } j | i \text{ volunteers}) \\ & \text{Pr}(\text{volunteer from } \mathcal{C}_i | \text{Advertisement from } i) \end{aligned}$$

$$\begin{aligned} & \text{Pr}(i \text{ awarded task from } j | i \text{ volunteers}) \\ & \text{Pr}(i \text{ awarded task from } j | i \text{ volunteers}) \\ & \text{Pr}(\text{volunteer from } \mathcal{C}_i | \text{Advertisement from } i) \end{aligned}$$

$$\begin{aligned} & \text{Costs and benefits of local processing on } i \in \mathcal{V}: \\ & b_i \triangleq \sum_{k \in \mathcal{Y}_i} \lambda_i^k (b_i^k - c_i^k) \\ & r_i \triangleq \sum_{k \in \mathcal{Y}_i} \lambda_i^k \pi_i^k (r_i^k - (b_i^k - c_i^k)) \\ & p_i(Q_i) \triangleq \sum_{k \in \mathcal{Y}_i} \lambda_i^k \pi_i^k p_i^k(Q_i) \end{aligned}$$

Fictitious payment functions added as stabilizing controls ("quantity" $Q_i \triangleq \sum_{j \in C_i} \gamma_j$).

Engineering Serendipity

Cooperation game

Agent utility function: rate of gain

Nash equilibrium

Existence, uniqueness, and asynchronous convergence

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol Flexible manufacturing

system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Totally asynchronous parallel computation of $\vec{\gamma}^*$ by local gradient ascent

Nash equilibrium

Existence, uniqueness, and asynchronous convergence

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol

Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Totally asynchronous parallel computation of $\vec{\gamma}^*$ by local gradient ascent

- □ Agents iterate asynchronously.
- \Box Each agent operates on a possibly outdated copy of $\vec{\gamma}$.
- □ Asynchronous system is described by difference inclusion.

Existence, uniqueness, and asynchronous convergence

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding
- Cooperative patrol
- Flexible manufacturing system
- Game: preliminaries *
- Game: Utility function
- Parallel Nash solver
- Definitions
- Assumptions
- Algorithm
- Results
- MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

- Totally asynchronous parallel computation of $\vec{\gamma}^*$ by local gradient ascent
 - □ Agents iterate asynchronously.
 - \Box Each agent operates on a possibly outdated copy of $\vec{\gamma}$.
 - □ Asynchronous system is described by difference inclusion.
 - □ It is sufficient to show synchronous transition mapping is a contraction with respect to maximum norm $(\|\vec{\gamma}\|_{\infty} \triangleq \max_{i \in \mathcal{C}} \{|\gamma_i|\}).$
 - \Box A unique equilibrium exists and is asymptotically stable.

Existence, uniqueness, and asynchronous convergence

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding
- Cooperative patrol
- Flexible manufacturing system
- Game: $preliminaries^*$
- Game: Utility function
- Parallel Nash solver
- Definitions
- Assumptions
- Algorithm
- Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

- Totally asynchronous parallel computation of $\vec{\gamma}^*$ by local gradient ascent
 - □ Agents iterate asynchronously.
 - \Box Each agent operates on a possibly outdated copy of $\vec{\gamma}$.
 - □ Asynchronous system is described by difference inclusion.
 - □ It is sufficient to show synchronous transition mapping is a contraction with respect to maximum norm $(\|\vec{\gamma}\|_{\infty} \triangleq \max_{i \in \mathcal{C}} \{|\gamma_i|\}).$
 - \Box A unique equilibrium exists and is asymptotically stable.
- Constraints on topology and payment functions ensure contraction.

Payment and topological constraints Definitions

 $\tau > 1$

k

p > 1

k

2

2

 $q_0 > k + p - 1$

Q

Q

Introduction $p_\ell(Q)$ $p_e(Q)$ Sample stabilizing payment (inverse-demand) functions m > 0b A -mQ0 0 Cooperative task 20 k $p_p(Q)$ $p_h(Q)$ Cooperative breeding $\kappa > 0$ Cooperative patrol A Α $\varepsilon > \kappa + 1$ Flexible manufacturing system 0 0 Game: preliminaries* 0 $\mathbf{2}$ Game: Utility function Parallel Nash solver For $k \in \mathbb{N}, \, p: [0,k] \mapsto \mathbb{R}$ is a stabilizing payment function if Definitions Assumptions $\square p'(Q) \triangleq dp(Q)/dQ < 0$ for all $Q \in [0, k]$. Algorithm $\square p''(Q) \triangleq d^2 p(Q)/dQ^2 > 0 \text{ for all } Q \in [0, k].$ Results $\Box \gamma p''(Q) \leq -p'(Q)$ for all $Q \in [\gamma, k - (1 - \gamma)]$ with $\gamma \in [0, 1]$.

Solitary optimal task-processing agents in biology and engineering

processing

MultiIFD: Distributed gradient descent/for constrained optimization

Closing remarks

Future directions³

Engineering Serendipity

Payment and topological constraints Definitions

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Introduction

- Cooperative breeding Cooperative patrol Flexible manufacturing system
- Game: preliminaries*
- Game: Utility function
- Parallel Nash solver

Definitions

- Assumptions
- Algorithm
- Results
- MultiIFD: Distributed gradient descent/for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

For $k \in \mathbb{N}$, $p: [0,k] \mapsto \mathbb{R}$ is a stabilizing payment function if

$$\Box \ p'(Q) \triangleq dp(Q)/dQ < 0 \text{ for all } Q \in [0, k].$$

$$\Box \ p''(Q) \triangleq d^2p(Q)/dQ^2 > 0 \text{ for all } Q \in [0, k].$$

$$\Box \ \gamma p''(Q) \le -p'(Q) \text{ for all } Q \in [\gamma, k - (1 - \gamma)] \text{ with } \gamma \in [0, 1].$$

For $k \in \{0, 1, ..., |\mathcal{C}|\}$, a conveyor $j \in \mathcal{V}$ is called a *k*-conveyor if it has k outgoing connections (i.e., $|\mathcal{C}_j| = k$).

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding
- Cooperative patrol Flexible manufacturing
- system
- Game: preliminaries*
- Game: Utility function
- Parallel Nash solver
- Definitions
- Assumptions
- Algorithm
- Results
- MultiIFD: Distributed gradient descent for constrained optimization
- Closing remarks
- Future directions*

Engineering Serendipity

Assume that:

1. For all $i \in C$ and $j \in V_i$, p_{ij} is a stabilizing payment function.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol

Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Engineering Serendipity

Assume that:

- 1. For all $i \in C$ and $j \in V_i$, p_{ij} is a stabilizing payment function.
- 2. For all $j \in \mathcal{V}$, $|\mathcal{C}_j| \leq 3$ (i.e., no conveyor can have more than 3 outgoing links to cooperators; each conveyor is a k-conveyor where $k \in \{0, 1, 2, 3\}$).

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding
- Cooperative patrol
- Flexible manufacturing system
- Game: preliminaries*
- Game: Utility function
- Parallel Nash solver
- Definitions
- Assumptions
- Algorithm
- Results
- MultiIFD: Distributed gradient descent for constrained optimization
- Closing remarks

Future directions*

Engineering Serendipity

Assume that:

- 1. For all $i \in C$ and $j \in V_i$, p_{ij} is a stabilizing payment function.
- 2. For all $j \in \mathcal{V}$, $|\mathcal{C}_j| \leq 3$ (i.e., no conveyor can have more than 3 outgoing links to cooperators; each conveyor is a k-conveyor where $k \in \{0, 1, 2, 3\}$).
- 3. For cooperator $i \in C$ and $j \in V_i$, if j is a 3-conveyor (i.e., $|C_j| = 3$), then there must be some other conveyor $k \in V_i$ that is a 2-conveyor (i.e., $|C_k| = 2$).

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

- Cooperative breeding
- Cooperative patrol
- Flexible manufacturing system
- Game: preliminaries*
- Game: Utility function
- Parallel Nash solver
- Definitions
- Assumptions
- Algorithm
- Results
- MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions'

Engineering Serendipity

Assume that:

- 1. For all $i \in C$ and $j \in V_i$, p_{ij} is a stabilizing payment function.
- 2. For all $j \in \mathcal{V}$, $|\mathcal{C}_j| \leq 3$ (i.e., no conveyor can have more than 3 outgoing links to cooperators; each conveyor is a k-conveyor where $k \in \{0, 1, 2, 3\}$).
- 3. For cooperator $i \in C$ and $j \in V_i$, if j is a 3-conveyor (i.e., $|C_j| = 3$), then there must be some other conveyor $k \in V_i$ that is a 2-conveyor (i.e., $|C_k| = 2$).

Algorithm for totally asynchronous gradient ascent

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol Flexible manufacturing system

Game: preliminaries*

Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks.

Future directions*

Engineering Serendipity

Define $T: [0,1]^n \mapsto [0,1]^n$ by $T(\vec{\gamma}) \triangleq (T_1(\vec{\gamma}), T_2(\vec{\gamma}), \ldots, T_n(\vec{\gamma}))$ where, for each $i \in \mathcal{C}$,

 $T_i(\vec{\gamma}) \triangleq \min\{1, \max\{0, \gamma_i + \sigma_i \nabla_i U_i(\vec{\gamma})\}\}$

Projected gradient ascent

Algorithm for totally asynchronous gradient ascent

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol Flexible manufacturing system

Game: preliminaries* Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks.

Future directions^{*}

Engineering Serendipity

Define $T: [0,1]^n \mapsto [0,1]^n$ by $T(\vec{\gamma}) \triangleq (T_1(\vec{\gamma}), T_2(\vec{\gamma}), \ldots, T_n(\vec{\gamma}))$ where, for each $i \in \mathcal{C}$, $T_i(\vec{\gamma}) \triangleq \min\{1, \max\{0, \gamma_i + \sigma_i \nabla_i U_i(\vec{\gamma})\}\},\$ where $\frac{1}{\sigma_i} \ge 2|\mathcal{V}_i| \max_{k \in \mathcal{V}_i} |p'_{ik}(0)|$ for all $\vec{\gamma} \in [0, 1]^n$.
Algorithm for totally asynchronous gradient ascent

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol Flexible manufacturing system

Game: preliminaries* Game: Utility function Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks.

Future directions*

Engineering Serendipity

Define $T: [0,1]^n \mapsto [0,1]^n$ by $T(\vec{\gamma}) \triangleq (T_1(\vec{\gamma}), T_2(\vec{\gamma}), \ldots, T_n(\vec{\gamma}))$ where, for each $i \in \mathcal{C}$,

 $T_i(\vec{\gamma}) \triangleq \min\{1, \max\{0, \gamma_i + \sigma_i \nabla_i U_i(\vec{\gamma})\}\},\$

where

$$\frac{1}{\sigma_i} \ge 2|\mathcal{V}_i| \max_{k \in \mathcal{V}_i} |p'_{ik}(0)|$$

for all $\vec{\gamma} \in [0,1]^n.$ If

$$\min_{j \in \mathcal{V}_i} |p'_{ij}\left(|\mathcal{C}_j|\right)| > \left(|\mathcal{V}_i| - \frac{1}{2}\right) \quad \max_{j \in \mathcal{V}_i} |c_{ij}| \quad \text{ for all } i \notin \mathcal{C},$$

then the totally asynchronous distributed iteration (TADI) sequence $\{\vec{\gamma}(t)\}$ generated with mapping T and the outdated estimate sequence $\{\vec{\gamma}^i(t)\}$ for all $i \in C$ each converge to the unique Nash equilibrium $\vec{\gamma}^*$ of the cooperation game.

Algorithm for totally asynchronous gradient ascent

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Cooperative breeding

Cooperative patrol Flexible manufacturing system

Game: preliminaries* Game: Utility function

Parallel Nash solver

Definitions

Assumptions

Algorithm

Results

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks.

Future directions*

Engineering Serendipity

Define
$$T : [0, 1]^n \mapsto [0, 1]^n$$
 by $T(\vec{\gamma}) \triangleq (T_1(\vec{\gamma}), T_2(\vec{\gamma}), \dots, T_n(\vec{\gamma}))$ where, for
each $i \in \mathcal{C}$,
$$T_i(\vec{\gamma}) \triangleq \min\{1, \max\{0, \gamma_i + \sigma_i \nabla_i U_i(\vec{\gamma})\}\},$$
where
$$\frac{1}{\sigma_i} \ge 2|\mathcal{V}_i| \max_{k \in \mathcal{V}_i} |p'_{ik}(0)|$$
for all $\vec{\gamma} \in [0, 1]^n$. If
$$\underbrace{\text{Benefit}}_{j \in \mathcal{V}_i} |p'_{ij}(|\mathcal{C}_j|)| > \underbrace{\left(|\mathcal{V}_i| - \frac{1}{2}\right)}_{j \in \mathcal{V}_i} \underbrace{\max_{j \in \mathcal{V}_i} |c_{ij}|}_{j \in \mathcal{V}_i} \text{ for all } i \notin \mathcal{C},$$

then the totally asynchronous distributed iteration (TADI) sequence $\{\vec{\gamma}(t)\}$ generated with mapping T and the outdated estimate sequence $\{\vec{\gamma}^i(t)\}$ for all $i \in C$ each converge to the unique Nash equilibrium $\vec{\gamma}^*$ of the cooperation game.

Results Cyclic feedback

Results Cyclic feedback

Future directions*

Engineering Serendipity

Results Cyclic feedback

Emergence due to market coupling from network cycles

Closing remarks

Future directions*

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Føcal problem

\$ocial foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions

MultiIFD: Distributed gradient descent for constrained optimization

IFD, power dispatch, and nutrient constraints

MultiIFD for intelligent lighting

Focal optimization problem

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

- Let $m, n \in \mathbb{N}$ and $\mathcal{X} \subseteq \mathbb{R}^n$ equipped with product topology.
 - For each $j \in \{1,2,\ldots,m\}$, $ec{a}_j \in \mathbb{R}^n$ and $c_j \in \mathbb{R}$.

The focal optimization problem:

minimize $F(\vec{x})$ subject to $A\vec{x} \ge \vec{c}$

```
where A \triangleq [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m]^\top and \vec{c} \triangleq [c_1, c_2, \dots, c_m]^\top.
```

Focal optimization problem

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Let m, n ∈ N and X ⊆ Rⁿ equipped with product topology.
For each j ∈ {1, 2, ..., m}, a_j ∈ Rⁿ and c_j ∈ R.
The focal optimization problem: minimize F(x) subject to Ax ≥ c
where A ≜ [a₁, a₂, ..., a_m]^T and c ≜ [c₁, c₂, ..., c_m]^T.

To show: Interdisciplinary connections.

Engineering Serendipity

Focal optimization problem

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions *

Let $m, n \in \mathbb{N}$ and $\mathcal{X} \subseteq \mathbb{R}^n$ equipped with product topology.

For each $j \in \{1,2,\ldots,m\}$, $ec{a}_j \in \mathbb{R}^n$ and $c_j \in \mathbb{R}$.

The focal optimization problem:

minimize $F(\vec{x})$ subject to $A\vec{x} \ge \vec{c}$

where $A \triangleq [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m]^\top$ and $\vec{c} \triangleq [c_1, c_2, \dots, c_m]^\top$.

To show: Interdisciplinary connections.

Distributed parallel solvers for this problem are not trivial.

Usually parallelizable dual-space methods are effectively centralized.

To show: Amenable to parallelization in primal space (matches eusocial insects?).

Engineering Serendipity

Social foraging: the ideal free distribution (IFD) (Fretwell 1972; Fretwell and Lucas 1969; Stephens et al. 2007)

Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Habitat in which animals self allocate according to IFD:

 \square $N \in \mathbb{N}$ foragers *free* to move among $n \in \mathbb{N}$ locations.

The *ideal* forager knows the suitability $s_i(x_i)$ of each location $i \in \{1, 2, ..., n\}$ with $x_i \in [0, N]$ occupants.

□ Suitabilities are monotonically decreasing.

Sufficiently small number of foragers continuously move away from lower suitability toward higher suitability.

Social foraging: the ideal free distribution (IFD) (Fretwell 1972; Fretwell and Lucas 1969; Stephens et al. 2007)

Introduction Graphical IFD with equilibrium suitability $\ell^* \in \mathbb{R}_{>0}$: Solitary optimal task-processing agents $s_1(x_1), s_2(x_2), s_3(x_3)$ in biology and engineering Cooperative task $\ell > \ell^*$ Suitability level processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging x_1, x_2, x_3 $x_1^* \equiv N$ $x_{3}^{*} +$ x_2^* +Power generation Patch occupants Intelligent lights Distributed solver Simulation Experiment **Closing remarks** Future directions* **Engineering Serendipity**

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Economic formulation:

 \Box For $i \in \{1, 2, \ldots, n\}$ and $x_i \in \mathbb{R}_{>0}$, let price $p_i(x_i) \triangleq 1/s_i(x_i).$

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Economic formulation:

 \Box For $i \in \{1, 2, \ldots, n\}$ and $x_i \in \mathbb{R}_{>0}$, let price $p_i(x_i) \triangleq 1/s_i(x_i).$

 $\hfill\square$ Prices are monotonically increasing.

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Economic formulation:

 \Box For $i \in \{1, 2, \ldots, n\}$ and $x_i \in \mathbb{R}_{>0}$, let price $p_i(x_i) \triangleq 1/s_i(x_i).$

 $\hfill\square$ Prices are monotonically increasing.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Economic formulation:

$$\square \text{ For } i \in \{1, 2, \dots, n\} \text{ and } x_i \in \mathbb{R}_{\geq 0} \text{, let } price$$
$$p_i(x_i) \triangleq 1/s_i(x_i).$$

 $\hfill\square$ Prices are monotonically increasing.

Price IFD with market price $\lambda^* \triangleq 1/\ell^*$:

$$\frac{1}{s_i(x_i^*)} = \boxed{p_i(x_i^*) = \lambda^*} = \frac{1}{\ell^*}$$
 or

$$\frac{1}{s_i(0)} = \boxed{p_i(0) > \lambda^*} = \frac{1}{\ell^*} \text{ and } x_i^* = 0$$

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Economic formulation:

$$\Box \text{ For } i \in \{1, 2, \dots, n\} \text{ and } x_i \in \mathbb{R}_{\geq 0} \text{, let } p_i(x_i) \triangleq 1/s_i(x_i).$$

 $\hfill\square$ Prices are monotonically increasing.

Price IFD with market price $\lambda^* \triangleq 1/\ell^*$:

Occupied patch at market price. Otherwise, entry price is too high. $\frac{1}{s_i(x_i^*)} = \boxed{p_i(x_i^*) = \lambda^*} = \frac{1}{\ell^*}$ or $\frac{1}{s_i(0)} = \boxed{p_i(0) > \lambda^*} = \frac{1}{\ell^*} \text{ and } x_i^* = 0$

Optimal Task-Processing Agents

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Engineering Serendipity

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

For example, if $F(\vec{x}) = \|\vec{x}\|_2^2 = x_1^2 + \dots + x_n^2$, then $x_i^* > 0$ for all $i \in \{1, 2, \dots, n\}$; in particular,

$$x_i^* = c_1 \frac{a_{1i}}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2}$$
$$\frac{p_i(x_i^*)}{a_{1i}} = \frac{\nabla_i F(x_i^*)}{a_{1i}} = \frac{2c_1}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2} = \lambda^*$$

where price
$$p_i(x_i) = 2x_i$$
.

Equilibrium distribution for $F(\vec{x}) = \|\vec{x}\|_1 = x_1 + x_2 + \dots + x_n$ allocates all foragers to patch $\arg \max\{a_{1i} : i \in \{1, 2, \dots, n\}\}.$ It may be valuable to increase spread of distribution.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

For example, if $F(\vec{x}) = \|\vec{x}\|_2^2 = x_1^2 + \dots + x_n^2$, then $x_i^* > 0$ for all $i \in \{1, 2, \dots, n\}$; in particular,

$$x_i^* = c_1 \frac{a_{1i}}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2}$$
$$\frac{p_i(x_i^*)}{a_{1i}} = \frac{\nabla_i F(x_i^*)}{a_{1i}} = \frac{2c_1}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2} = \lambda^*$$

where price $p_i(x_i) = 2x_i$.

Equilibrium distribution matches classical IFD with

$$s_i(x_i) = \frac{a_{1i}}{2x_i} \quad \text{and} \quad N = c_1 \frac{a_{11} + a_{12} + \dots + a_{1n}}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2} \quad \text{and} \quad \ell^* = \frac{1}{\lambda^*}$$

for $i \in \{1, 2, \dots, n\}$.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

For example, if $F(\vec{x}) = \|\vec{x}\|_2^2 = x_1^2 + \dots + x_n^2$, then $x_i^* > 0$ for all $i \in \{1, 2, \dots, n\}$; in particular,

$$x_i^* = c_1 \frac{a_{1i}}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2}$$
$$\frac{p_i(x_i^*)}{a_{1i}} = \frac{\nabla_i F(x_i^*)}{a_{1i}} = \frac{2c_1}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2} = \lambda^*$$

where price $p_i(x_i) = 2x_i$.

Equilibrium distribution matches classical IFD with

$$s_i(x_i) = \frac{a_{1i}}{2x_i} \quad \text{and} \quad N = c_1 \frac{a_{11} + a_{12} + \dots + a_{1n}}{a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2} \quad \text{and} \quad \ell^* = \frac{1}{\lambda^*}$$
 for $i \in \{1, 2, \dots, n\}$.

So nutrient-constrained cost-minimizing IFD modulates necessary N with constraints and environment.

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Where there's one nutrient, there may be others. Let m > 1:

minimize $F(\vec{x})$

subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge c_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge c_2$$

 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \ge c_m$

Hence, the IFD with multiple nutrient constraints is the focal optimization problem.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Where there's one nutrient, there may be others. Let m > 1:

minimize $F(\vec{x})$

subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \ge c_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \ge c_2$

 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \geq c_m$

Hence, the IFD with multiple nutrient constraints is the focal/ optimization problem.

KKT does not imply uniform suitability/price equilibrium. For $i \in \{1, 2, \dots, n\}$ and $j \in \{1, 2, \dots, m\}$, gradient oblique to \vec{a}_j :

> Active constraint support /Truncation support $\nabla_i F(\vec{x}^*) = \lambda_1^* a_{1i} + \lambda_2^* a_{2i} + \dots + \lambda_m^* a_{mi} + \mu_i^* - \nu_i^*$

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Where there's one nutrient, there may be others. Let m>1:

minimize $F(\vec{x})$

subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge c_1$

 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \ge c_m$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \ge c_2$

Hence, the IFD with multiple nutrient constraints is the focal/

op Impact on observations of foraging distributions?

KKT does not imply uniform suitability/price equilibrium. For $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$, gradient oblique to \vec{a}_j :

Active constraint support

$$F(\vec{x}^*) = \lambda_1^* a_{1i} + \lambda_2^* a_{2i} + \dots + \lambda_m^* a_{mi} + \mu_i^* - \nu_i^*$$

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

\$imulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Classic problem in distributed power generation:

minimize $\sum C_i(P_i)$

subject to $P_1 + P_2 + \dots + P_n = P_D$

for $n \in \mathbb{N}$ where generator $i \in \{1, 2, ..., n\}$ contributes P_i power to P_D power demanded at a generator cost of $C_i(P_i)$.

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

\$imulation

Experiment

Closing remarks

Future directions*

Classic problem in distributed power generation:

minimize $\sum C_i(P_i)$

subject to $P_1 + P_2 + \dots + P_n = P_D$

for $n \in \mathbb{N}$ where generator $i \in \{1, 2, ..., n\}$ contributes P_i power to P_D power demanded at a generator cost of $C_i(P_i)$.

Graphical solution described by Bergen and Vittal (2000):

Solitar√ optimal task-processing agents in biology and engineering

Cooperative task processing

```
MultiIFD: Distributed
gradient descent for
constrained optimization
```

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Classic problem in distributed power generation:

minimize $\sum C_i(P_i)$

subject to $P_1 + P_2 + \cdots + P_n = P_D$

for $n \in \mathbb{N}$ where generator $i \in \{1, 2, \dots, n\}$ contributes P_i power to P_D power demanded at a generator cost of $C_i(P_i)$.

Graphical solution described by Bergen and Vittal (2000):

Generated power

Optimal Task-Processing Agents

Engineering Serendipity

Economic power dispatch

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

\$imulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Economic power dispatch

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

\$imulation

Experiment

Closing remarks

Future directions*

Classic problem in distributed power generation:

minimize $\sum_{i=1}^{i} C_i(P_i)$

subject to $P_1 + P_2 + \dots + P_n \ge P_D$

 $U(D) \cap U(D) \cap U(D)$

for $n \in \mathbb{N}$ where generator $i \in \{1, 2, ..., n\}$ contributes P_i power to P_D power demanded at a generator cost of $C_i(P_i)$.

 $\xrightarrow{\lambda < \lambda^*} P_1, P_2, P_3$

Graphical solution described by Bergen and Vittal (2000)

(repeat IFD discussion for economic dispatch problem)

Generated power

Engineering Serendipity

sir

price-minimization IFD

Optimal Task-Processing Agents

an meguanty

constraint is active
Economic power dispatch

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

\$imulation

Experiment

Closing remarks

Future directions*

minimize $\sum C_i(P_i)$ subject to $P_1 + P_2 + \cdots + P_n \ge P_D$ for $n \in \mathbb{N}$ where generator $i \in \{1, 2, \dots, n\}$ contributes P_i power to P_D power demanded at a generator cost of $C_i(P_i)$. Graphical solution described by Bergen and Vittal (2000) C'(D) C'(D)(repeat IFD discussion for economic dispatch problem) [augment with comments about real-time distributed optimization] sir an meguanty price-minimization IFD constraint is active $\xrightarrow{\lambda < \lambda^*} P_1, P_2, P_3$ Generated power

Classic problem in distributed power generation:

Engineering Serendipity

Intelligent lights

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Optimal Task-Processing Agents

(e.g., Wen and Agogino 2008)


```
Optimal Task-Processing Agents
```


- There are $n \in \mathbb{N}$ lights and $m \in \mathbb{N}$ sensors.
- For each $i \in \{1, 2, ..., n\}$, x_i is control signal for i^{th} light.
- Lighting-control-photosensor-reading maps are approximately linear.

Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

There are $n \in \mathbb{N}$ lights and $m \in \mathbb{N}$ sensors.

- For each $i \in \{1, 2, \dots, n\}$, x_i is control signal for i^{th} light.
- Lighting-control-photosensor-reading maps are approximately linear.
- Slow disturbance sources (e.g., windows) exist and can be harvested.

Optimal Task-Processing Agents

Solitary optimal task-processing agents in biology and

engineering

Introduction

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

There are $n \in \mathbb{N}$ lights and $m \in \mathbb{N}$ sensors.

- For each $i \in \{1, 2, ..., n\}$, x_i is control signal for i^{th} light.
- Lighting-control-photosensor-reading maps are approximately linear.
- Slow disturbance sources (e.g., windows) exist and can be harvested.
- Meet constraints at each sensor using reduced power.

Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Intelligent lights

Introduction

Solitary optimal / task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Especially for intelligent light case, *distributed* solvers are desired.

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Especially for intelligent light case, *distributed* solvers are desired.

Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space.

Introduction

Solitary optimal / task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment

Closing remarks

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for <u>constrained optimization</u> Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation

Experiment

Closing remarks

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.
- Distributed approach here for convex F with monotonic ∇F :

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation

Experiment

Closing remarks

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.
- Distributed approach here for convex F with monotonic ∇F :
 - \Box Real-time solutions are allowed to violate constraints.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Dist	ributed
gradient desc	ent for
constrained o	ptimization
Focal proble	m
Social foragi	ng
Power gene	ration
Intelligent lig	Ihts
Distributed s	olver

Simulation

Experiment

Closing remarks

Future directions*

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.
- Distributed approach here for convex F with monotonic ∇F :
 - □ Real-time solutions are allowed to violate constraints.
 - $\square n \in \mathbb{N} \text{ agents act independently to reduce } x_i \text{ for each } i \in \{1, 2, \dots, n\} \text{ (monotonicity } \implies \text{ reduced cost).}$

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed
gradient descent for
constrained optimization
Focal problem
Social foraging
Power generation
Intelligent lights

Simulation

Experiment

Closing remarks

Future directions*

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.
- Distributed approach here for convex F with monotonic ∇F :
 - □ Real-time solutions are allowed to violate constraints.
 - $\square n \in \mathbb{N} \text{ agents act independently to reduce } x_i \text{ for each } i \in \{1, 2, \dots, n\} \text{ (monotonicity } \implies \text{ reduced cost).}$
 - \square $m \in \mathbb{N}$ independent agents provide response surfaces to support constrained equilibrium.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative	task
processing	

MultiIFD: Distributed gradient descent for		
constrained	optimization	
Focal prob	lem	
Social fora	ging	
Power gen	eration	
Intelligent I	ights	
Distributed	solver	
Simulation		
Experimen	t	

Closing remarks

Future directions*

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.
- Distributed approach here for convex F with monotonic ∇F :
 - □ Real-time solutions are allowed to violate constraints.
 - $\square n \in \mathbb{N} \text{ agents act independently to reduce } x_i \text{ for each } i \in \{1, 2, \dots, n\} \text{ (monotonicity } \implies \text{ reduced cost).}$
 - $\square m \in \mathbb{N}$ independent agents provide response surfaces to support constrained equilibrium.
 - Interaction between agents on constraint causes trajectories to slide along constraint boundary toward equilibrium.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative	task
processing	

MultiIFD: Distributed gradient descent for		
constrained optimization		
Focal problem		
Social foraging		
Power generation		
Intelligent lights		
Distributed solver		
Simulation		
Experiment		

Closing remarks

Future directions*

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has separable constraint set \mathbb{R}^m , but sparsity in A is often destroyed in dual space. Sequential iterations yield no parallelization.
- Distributed approach here for convex F with monotonic ∇F :
 - □ Real-time solutions are allowed to violate constraints.
 - $\square n \in \mathbb{N} \text{ agents act independently to reduce } x_i \text{ for each } i \in \{1, 2, \dots, n\} \text{ (monotonicity } \implies \text{ reduced cost).}$
 - $\square m \in \mathbb{N}$ independent agents provide response surfaces to support constrained equilibrium.
 - Interaction between agents on constraint causes trajectories to slide along constraint boundary toward equilibrium.
 -] Trajectories reach invariant bounded neighborhood of optimum \vec{x}^* .

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

- Especially for intelligent light case, *distributed* solvers are desired.
- Constraint set $\{\vec{x} \in \mathcal{X} : A\vec{x} \ge \vec{c}\}$ is non-separable polyhedron in general.
- Dual problem has concrebbe constraint set \mathbb{D}^m but sparsity in A is often destrict System state \vec{x} is stigmergic memory. O parallelization.
- Distributed approach here for convex r -with monotonic abla F:
 - \Box Real-time solutions are allowed to violate constraints.
 - $\square n \in \mathbb{N} \text{ agents act independently to reduce } x_i \text{ for each } i \in \{1, 2, \dots, n\} \text{ (monotonicity } \implies \text{ reduced cost).}$
 - $\square m \in \mathbb{N}$ independent agents provide response surfaces to support constrained equilibrium.
 - Interaction between agents on constraint causes trajectories to slide along constraint boundary toward equilibrium.
 -] Trajectories reach invariant bounded neighborhood of optimum \vec{x}^* .

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task

MultiIFD: Distributed gradient descent for constrained optimization Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

A *MultiIFD* discrete-time realization with sufficiently small parameter δ :

 \Box For each $i \in \{1, 2, \ldots, n\}$,

$$x_i^+ = x_i - \delta.$$

 \Box For each $j \in \{1,2,\ldots,m\}$,

$$\vec{x}^{+} = \vec{x} + \begin{cases} \sigma_{j} \vec{v}_{j} & \text{if } \vec{a}_{j}^{\top} \vec{x} \leq c_{j} \\ 0 & \text{otherwise} \end{cases}$$

where MultiIFD direction

$$\vec{v}_j = \begin{bmatrix} \frac{a_{j1}}{\nabla_1 F(\vec{x})}, & \frac{a_{j2}}{\nabla_2 F(\vec{x})}, & \cdots, & \frac{a_{jn}}{\nabla_n F(\vec{x})} \end{bmatrix}$$

 $\sigma_j = \frac{c_j - \vec{a}_j^\top \vec{x}}{\vec{a}_j^\top \vec{v}_j}.$

and

Engineering Serendipity

Introduction

Solitary optimal / task-processing agents in biology and engineering

Cooperative task

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

A *MultilFD* discrete-time realization with sufficiently small parameter δ :

 \Box For each $i \in \{1, 2, \ldots, n\}$,

"Animals return from patches" $\rightarrow x_i^+ = x_i - \delta$.

$$\vec{x}^{+} = \vec{x} + \begin{cases} \sigma_{j} \vec{v}_{j} & \text{if } \vec{a}_{j}^{\top} \vec{x} \leq c_{j} \\ 0 & \text{otherwise} \end{cases}$$

where MultiIFD direction

$$\vec{v}_j = \begin{bmatrix} \frac{a_{j1}}{\nabla_1 F(\vec{x})}, & \frac{a_{j2}}{\nabla_2 F(\vec{x})}, & \cdots, & \frac{a_{jn}}{\nabla_n F(\vec{x})} \end{bmatrix}$$

 $\sigma_j = \frac{c_j - \vec{a}_j^\top \vec{x}}{\vec{a}_i^\top \vec{v}_j}.$

and

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

A *MultilFD* discrete-time realization with sufficiently small parameter δ :

 \Box For each $i \in \{1, 2, \ldots, n\}$,

"Animals return from patches" $\rightarrow x_i^+ = x_i - \delta$.

 \Box For each $j \in \{1, 2, \ldots, m\}$,

for a nutrient"
$$\vec{x}^+ = \vec{x} + \begin{cases} \sigma_j \vec{v}_j & \text{if } \vec{a}_j^\top \vec{x} \leq c_j \\ 0 & \text{otherwise} \end{cases}$$

where MultiIFD direction

$$\vec{v}_j = \begin{bmatrix} \frac{a_{j1}}{\nabla_1 F(\vec{x})}, & \frac{a_{j2}}{\nabla_2 F(\vec{x})}, & \cdots, & \frac{a_{jn}}{\nabla_n F(\vec{x})} \end{bmatrix}$$

 $\sigma_j = \frac{c_j - \vec{a}_j^\top \vec{x}}{\vec{a}_i^\top \vec{v}_j}.$

and

"□

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment

Closing remarks

Future directions^{*}

• A *MultilFD* discrete-time realization with sufficiently small parameter δ :

 $\sigma_j = \frac{c_j - \vec{a}_j^\top \vec{x}}{\vec{a}_j^\top \vec{v}_j}.$

 $\ \ \square$ For each $i \in \{1,2,\ldots,n\}$,

"Animals return from patches" $\rightarrow x_i^+ = x_i - \delta$.

 \Box For each $j \in \{1, 2, \ldots, m\}$,

for a nutrient"
$$\vec{x}^+ = \vec{x} + \begin{cases} \sigma_j \vec{v}_j & \text{if } \vec{a}_j^\top \vec{x} \leq c_j \\ 0 & \text{otherwise} \end{cases}$$

where MultiIFD direction

Dispatch according to *n* suitabilities $\vec{v}_j = \begin{bmatrix} \frac{a_{j1}}{\nabla_1 F(\vec{x})}, & \frac{a_{j2}}{\nabla_2 F(\vec{x})}, & \cdots, & \frac{a_{jn}}{\nabla_n F(\vec{x})} \end{bmatrix}^\top$

and

"Fc

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment Closing remarks

Future directions

 \Box For each $i \in \{1, 2, ..., n\}$, "Animals return from patches" $\longrightarrow x_i^+ = x_i - \delta$. \square For each $j \in \{1, 2, \ldots, m\}$, "Foragers dispatched for a nutrient" $\rightarrow \vec{x}^+ = \vec{x} + \begin{cases} \sigma_j \vec{v}_j & \text{if } \vec{a}_j^\top \vec{x} \le c_j \\ 0 & \text{otherwise} \end{cases}$ where MultiIFD direction $\rightarrow \vec{v}_j = \begin{bmatrix} \frac{a_{j1}}{\nabla_1 F(\vec{x})}, & \frac{a_{j2}}{\nabla_2 F(\vec{x})}, & \cdots, & \frac{a_{jn}}{\nabla_n F(\vec{x})} \end{bmatrix}^\top$ Dispatch according to *n* suitabilities and Reach constraint surface $\sigma_j = \frac{c_j - \vec{a}_j^\top \vec{x}}{\vec{a}_i^\top \vec{v}_i}.$

A *MultiIFD* discrete-time realization with sufficiently small parameter δ :

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
task-processing agents in biology and engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
in biology and engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment
Power generation Intelligent lights Distributed solver Simulation Experiment
Intelligent lights Distributed solver Simulation Experiment
Distributed solver Simulation Experiment
Simulation Experiment
Experiment
Closing remarks
Future directions*
•
•
•

Theoretical analysis predicts invariant hypercorners.

Engineering Serendipity

Introduction Solitary optimal task-processing agents in biology and engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights **Distributed solver** Simulation Experiment **Closing remarks** Future directions*

- Theoretical analysis predicts invariant hypercorners.
 - ☐ For single-constraint case, system enters invariant corners of hypercube with vertex anchored in constraint hyperplane.

Introduction Solitary optimal task-processing agents in biology and engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights **Distributed solver** Simulation Experiment **Closing remarks** Future directions*

Theoretical analysis predicts invariant hypercorners.

- □ For single-constraint case, system enters invariant corners of hypercube with vertex anchored in constraint hyperplane.
- □ Hypercube slides along constraint toward fixed hypercorners.

Introduction	•
Solitary optimal	•
task-processing agents	•
in biology and	
engineering	•
Cooperative task	•
processing	•
MultiIFD: Distributed	•
gradient descent for	•
constrained optimization	•
	•
Focal problem	•
Social foraging	•
Social loraging	•
Power generation	-
Intelligent lights	•
Distributed colver	•
Distributed solver	•
Simulation	•
Experiment	•
Exponnion	•
Closing remarks	•
	•
Future directions*	•
Future directions*	•
Future directions*	•

- Theoretical analysis predicts invariant hypercorners.
 - □ For single-constraint case, system enters invariant corners of hypercube with vertex anchored in constraint hyperplane.
 - □ Hypercube slides along constraint toward fixed hypercorners.
 - \Box Ultimate error bounds from by fixed set location (2δ for $\|\cdot\|_2^2$).

Solitary optimal	
task-processing agents	
in biology and	
engineering	
Cooperative task	
processing	
gradient descent for	
constrained ontimization	
Focal problem	
Social foraging	
Power generation	
Intelligent lights	
Distributed solver	
Simulation	
Experiment	
Closing remarks	
Future directions*	

Introduction

- Theoretical analysis predicts invariant hypercorners.
 - □ For single-constraint case, system enters invariant corners of hypercube with vertex anchored in constraint hyperplane.
 - □ Hypercube slides along constraint toward fixed hypercorners.
 - \Box Ultimate error bounds from by fixed set location (2δ for $\|\cdot\|_2^2$).
- For multiple active constraints, hypercubes interact:

Introduction Solitary optimal task-processing agents in biology and engineering Cooperative task processing MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging Power generation Intelligent lights Distributed solver Simulation Experiment Closing remarks Future directions*

- Theoretical analysis predicts invariant hypercorners.
 - □ For single-constraint case, system enters invariant corners of hypercube with vertex anchored in constraint hyperplane.
 - □ Hypercube slides along constraint toward fixed hypercorners.
 - \Box Ultimate error bounds from by fixed set location (2δ for $\|\cdot\|_2^2$).
- For multiple active constraints, hypercubes interact:

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

Introduction

MultiIFD: Distributed gradient descent for constrained optimization

Focal problem Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions*

Richer example:

Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging

Power generation Intelligent lights Distributed solver

Simulation Experiment

Closing remarks

Future directions*

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging

Power generation Intelligent lights Distributed solver

Simulation Experiment

Closing remarks

Future directions*

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem Social foraging

Power generation Intelligent lights

Distributed solver

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization Focal problem

Social foraging Power generation Intelligent lights Distributed solver.

Simulation

Experiment

Closing remarks

Future directions*

Engineering Serendipity

Experimental results

Distributed solver with automatic commissioning

Experimental results

Centralized solver with automatic commissioning

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Closing remarks

Engineering Serendipity

Contributions Solitary task-processing agents

	n	tr	\sim	\sim	1.1	oti	\cap	n
		LL I	U	u	u	บแ	U	
2			~	~	~	~	-	

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions *

Developed solitary-agent optimization framework.

Engineering Serendipity

Contributions Solitary task-processing agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions *

Developed solitary-agent optimization framework.

Generalizes classical optimal foraging theory.

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized	mollusc*
001101011200	made

Acknowledgments

Works cited

 ${\sf Future\ directions}^*$

Developed solitary-agent optimization framework.

Generalizes classical optimal foraging theory.

Generates foraging-like behaviors that perform better under realistic assumptions.

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Developed solitary-agent optimization framework.

□ Generalizes classical optimal foraging theory.

Generates foraging-like behaviors that perform better under realistic assumptions.

Used solitary-agent framework for engineering and biological applications.

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Developed solitary-agent optimization framework.

- □ Generalizes classical optimal foraging theory.
- Generates foraging-like behaviors that perform better under realistic assumptions.
- Used solitary-agent framework for engineering and biological applications.
 - Autonomous agent design: static behavior that adjusts to reduce shortfall likelihood in finite-event scenario.

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

- Generalized mollusc*
- Acknowledgments
- Works cited

Future directions*

Developed solitary-agent optimization framework.

- □ Generalizes classical optimal foraging theory.
- Generates foraging-like behaviors that perform better under realistic assumptions.
- Used solitary-agent framework for engineering and biological applications.
 - □ Autonomous agent design: static behavior that adjusts to reduce shortfall likelihood in finite-event scenario.
 - Ecological rationality: impulsiveness explained as residue of operant laboratory*.

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

- Generalized mollusc*
- Acknowledgments
- Works cited

Future directions*

Engineering Serendipity

Developed solitary-agent optimization framework.

- □ Generalizes classical optimal foraging theory.
- Generates foraging-like behaviors that perform better under realistic assumptions.
- Used solitary-agent framework for engineering and biological applications.
 - □ Autonomous agent design: static behavior that adjusts to reduce shortfall likelihood in finite-event scenario.
 - Ecological rationality: impulsiveness explained as residue of operant laboratory*.
 - Ecological rationality: sunk-cost effect showed to be rate maximizer with entry costs.

Contributions Cooperative task-processing networks

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions *

Developed framework for cooperative task processing on a network.

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

 ${\sf Future\ directions}^*$

Developed framework for cooperative task processing on a network.

Candidate model for cooperative breeding, social foraging, cooperative patrol, flexible manufacturing systems, coffee shops, and others.

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

-			
General	ized	mol	USC
Contonal	1200		1000

Acknowledgments

Works cited

Future directions *

Developed framework for cooperative task processing on a network.

Candidate model for cooperative breeding, social foraging, cooperative patrol, flexible manufacturing systems, coffee shops, and others.

Fictitious economy generates Nash equilibrium solutions with non-trivial task sharing.

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

- Generalized mollusc*
- Acknowledgments

Works cited

Future directions*

Developed framework for cooperative task processing on a network.

Candidate model for cooperative breeding, social foraging, cooperative patrol, flexible manufacturing systems, coffee shops, and others.

□ Fictitious economy generates Nash equilibrium solutions with non-trivial task sharing.

Totally asynchronous distributed solver converges to unique
 Nash equilibrium under topological and payment constraints.

Engineering Serendipity

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Developed framework for cooperative task processing on a network.

Candidate model for cooperative breeding, social foraging, cooperative patrol, flexible manufacturing systems, coffee shops, and others.

□ Fictitious economy generates Nash equilibrium solutions with non-trivial task sharing.

- Topological cycles lead to patterns qualitatively similar to load balancing.
- Totally asynchronous distributed solver converges to unique Nash equilibrium under topological and payment constraints.

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Developed framework for cooperative task processing on a network.

Candidate model for cooperative breeding, social foraging, cooperative patrol, flexible manufacturing systems, coffee shops, and others.

Fictitious economy generates Nash equilibrium solutions with non-trivial task sharing.

- Topological cycles lead to patterns qualitatively similar to load balancing.
- Totally asynchronous distributed solver converges to unique
 Nash equilibrium under topological and payment constraints.
 - Convergence conditions similar to Hamilton's rule on networks.

Engineering Serendipity

Contributions

Distributed solver for optimization under constraints

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Engineering Serendipity

		n	tr	0	d	u	ct	io	n	
--	--	---	----	---	---	---	----	----	---	--

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

 ${\sf Future\ directions}^*$

New formulation of IFD as cost minimizer under nutrient constraints.

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

 ${\sf Future\ directions}^*$

New formulation of IFD as cost minimizer under nutrient constraints.

Related IFD, economic power dispatch, and intelligent lights.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

-			. 1
Genera	lized	mol	USC ¹
0011010	1200		0.00

Acknowledgments

Works cited

Future directions *

- New formulation of IFD as cost minimizer under nutrient constraints.
- Related IFD, economic power dispatch, and intelligent lights.
- Developed distributed solver for non-linear optimization program with constraints.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

- New formulation of IFD as cost minimizer under nutrient constraints.
- Related IFD, economic power dispatch, and intelligent lights.
- Developed distributed solver for non-linear optimization program with constraints.
- Further developed tabletop intelligent lights testbed.

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

- New formulation of IFD as cost minimizer under nutrient constraints.
- Related IFD, economic power dispatch, and intelligent lights.
- Developed distributed solver for non-linear optimization program with constraints.
- Further developed tabletop intelligent lights testbed.
- Verified distributed solver matches centralized solver performance on experimental testbed.

Engineering Serendipity

Bio-inspiration: Generalized mollusc* (Anderson 2001; Ruppert et al. 2004)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Hypothetical generalized mollusc: Lots of molluscs under one shell

Engineering Serendipity

Generalized mollusemodels* (Pavlic 2010)?

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Hypothetical generalized mollusc: Lots of molluscs under one shell

Abstract optimal task-processing agent: Lots of agents under unified behavioral framework

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

(interdisciplinary research in engineering: sticking your neck out to work with animals)

Thank you!

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions*

(interdisciplinary research in engineering: sticking your neck out to work with animals)

Thank you!

Helpful People: Kevin M. Passino, Thomas A. Waite, Ian M. Hamilton

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions

(interdisciplinary research in engineering: sticking your neck out to work with animals)

- Thank you!
- Helpful People: Kevin M. Passino, Thomas A. Waite, Ian M. Hamilton
- Reading Committee: Andrea Serrani, Atilla Eryilmaz, David Blau

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions

NSF

(interdisciplinary research in engineering: sticking your neck out to work with animals)

Thank you!

- Helpful People: Kevin M. Passino, Thomas A. Waite, Ian M. Hamilton
- Reading Committee: Andrea Serrani, Atilla Eryilmaz, David Blau
- Funding Sources: AFRL, AFOSR, OSU, NSF

Thanks! Questions?

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions

Generalized mollusc*

Acknowledgments

Works cited

Future directions

(interdisciplinary research in engineering: sticking your neck out to work with animals)

Thank you!

- Helpful People: Kevin M. Passino, Thomas A. Waite, Ian M. Hamilton
- Reading Committee: Andrea Serrani, Atilla Eryilmaz, David Blau
- Funding Sources: AFRL, AFOSR, OSU, NSF
- Questions?

Engineering Serendipity

Works cited

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Contributions Generalized mollusc*

Acknowledgments

Works cited

Future directions*

Theodore P. Pavlic and Kevin M. Passino. Generalizing foraging theory for analysis and design. *International Journal of Robotics Research*, 2010c. To appear in special Stochastic Robotics issue

Theodore P. Pavlic and Kevin M. Passino. When rate maximization is impulsive. *Behavioral Ecology and Sociobiology*, 64(8):1255–1265, August 2010a. doi:10.1007/s00265-010-0940-1

Theodore P. Pavlic and Kevin M. Passino. The sunk-cost effect as an optimal rate-maximizing behavior. *Acta Biotheoretica*, 2010b. doi:10.1007/s10441-010-9107-8. In press

Theodore P. Pavlic and Kevin M. Passino. Cooperative task processing. *IEEE Transactions on Automatic Control*, 2010d. Submitted

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents Solitary: Speed choice^{*} CTPN MultiIFD

Engineering Serendipity

Future*

Future directions*

- Solitary task-processing agents
- Cooperative task processing networks
- MultiIFD gradient descent
- Future future directions*

*Omitted for brevity

			- 6						
 n	tr	\cap	σ	11	\sim	tτ	\cap	n	
	u.	U	v	u	U	u	U		

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Future directions: solitary task-processing agents*

*Omitted for brevity

Optimal Task-Processing Agents

Engineering Serendipity

Solitary task-processing agents

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Incorporate speed choice into advantage-to-disadvantage framework (details follow)

Investigate using post-modern portfolio theory (PMPT) and stochastic dominance to revitalize risk-sensitivity theory.

Engineering Serendipity

Foraging theory for speed choice*

Introduction	•
Solitary optimal	•
task-processing agents	•
in biology and	•
engineering	•
	•
Cooperative task	•
processing	•
MultiIED: Distributed	•
gradient descent for	•
constrained optimization	•
	•
Closing remarks	•
	•
Future directions*	•
Solitary agents	•
Solitary: Speed	•
choice*	•
CTPN	
	•
MultiFD	•
Future*	•
	•
	•
	•
	*

- Vehicle speed choice is very similar to cryptic prey problem described by Gendron and Staddon (1983)
 - □ Ceteris paribus, encounter rate increases with search speed
 - ☐ Search cost increases with search speed
 - Detection mistakes may vary with speed
 - Non-trivial speed—prey choice coupling
 - $\blacksquare \operatorname{Prey} \Longrightarrow \operatorname{speed} \Longrightarrow \operatorname{rate} \Longrightarrow \operatorname{prey}$

Bobwhite quail (Gendron and Staddon 1983)

Foraging theory for speed choice*

Solitary optimal
task-processing agents
in biology and
engineering
Cooperative task
processing
MultiIED: Distributed
gradient descent for
gradient descent for
constrained optimization
Closing remarks
Future directions*
Solitary agents
Solitary: Speed
choice*
Choice
CTPN
MultiIFD
Future*

Introduction

- Vehicle speed choice is very similar to cryptic prey problem described by Gendron and Staddon (1983)
 - □ Ceteris paribus, encounter rate increases with search speed
 - ☐ Search cost increases with search speed
 - Detection mistakes may vary with speed
 - Non-trivial speed—prey choice coupling
 - Prey \implies speed \implies rate \implies prey
- To match bobwhite quail observations, Gendron and Staddon choose detection function $P_i^d(u) \triangleq (1 (u/u_{\max})^{K_i})^{1/K_i}$ that maps search speed $u \in [0, u_{\max}]$ to detection probability P_i^d for tasks of type *i* with conspicuousness $K_i \in [0, \infty)$.
 - □ No analytical tractability
 - \Box Chose n = 2 for simulation (1983)
 - $\square P_i^d$ is strange at bounds (1 and 0)

Optimal Task-Processing Agents

Bobwhite quail (Gendron and

Staddon 1983)

Engineering Serendipity

On-line prey-speed choice for $n \in \mathbb{N}$: Effects of speed* (Pavlic and Passino 2009)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

MultiIFD

Future*

Speed
$$u \in [u_{\min}, u_{\max}] \subset [0, \infty)$$
 influences each encounter rate

$$\lambda_i(\mathbf{u}) = \mathbf{u} D_i P_i^d(\mathbf{u})$$

where D_i is the linear density in the population

Engineering Serendipity

On-line prey-speed choice for $n \in \mathbb{N}$ **: Effects of speed*** (Pavlic and Passino 2009)

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

```
Closing remarks
```

Future directions*

```
Solitary agents
```

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Speed
$$u \in [u_{\min}, u_{\max}] \subset [0, \infty)$$
 influences each encounter rate

$$\lambda_i(\boldsymbol{u}) = \boldsymbol{u} D_i P_i^d(\boldsymbol{u})$$

where D_i is the linear density in the population

Detection function is linear interpolation of probability bounds $P_i^d(u)$

 $P_i^d(u) = P_i^\ell u + P_i^a$
Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

```
Closing remarks
```

Future directions*

```
Solitary agents
```

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Speed
$$u \in [u_{\min}, u_{\max}] \subset [0, \infty)$$
 influences each encounter rate

$$\lambda_i(\boldsymbol{u}) = \boldsymbol{u} D_i P_i^d(\boldsymbol{u})$$

where D_i is the linear density in the population

Detection function is linear interpolation of probability bounds $P_i^d(u)$ $1 \stackrel{\frown}{+}$

 $u_{\rm max}$

u

$$c^s(u) = c^s_\ell u + c^s_a$$

Engineering Serendipity

high

low

0

 u_{\min}

Optimal Task-Processing Agents

 $P_i^d(u) = P_i^\ell u + P_i^a$

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

```
Closing remarks
```

Future directions*

```
Solitary agents
```

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Speed
$$u \in [u_{\min}, u_{\max}] \subset [0, \infty)$$
 influences each encounter rate

$$\lambda_i(\boldsymbol{u}) = \boldsymbol{u} D_i P_i^d(\boldsymbol{u})$$

where D_i is the linear density in the population

Detection function is linear interpolation of probability bounds $P_i^d(u)$

[Processing costs can be modeled in a similar way]

$$c_i(u) = c_i^\ell u + c_i^a$$

Engineering Serendipity

Optimal Task-Processing Agents

 $P_i^d(u) = P_i^\ell u + P_i^a$

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed	
gradient descent for	
constrained optimization	1

```
Closing remarks
```

Future directions*

```
Solitary agents
```

Solitary: Speed choice*

CTPN

MultiIFD

Future*

After regrouping, new objective function

$$R(\vec{p}, u) = \frac{G_2(\vec{p})u^2 + G_1(\vec{p})u + G_0(\vec{q})}{T_2(\vec{p})u^2 + T_1(\vec{p})u + 1}$$

where coefficients

$$G_{2}(\vec{p}) \triangleq \sum_{i=1}^{n} D_{i} p_{i} g_{i} P_{i}^{\ell} \qquad T_{2}(\vec{p}) \triangleq \sum_{i=1}^{n} p_{i} \tau_{i} D_{i} P_{i}^{\ell} G_{1}(\vec{p}) \triangleq \sum_{i=1}^{n} D_{i} p_{i} P_{i}^{a} g_{i} - c_{\ell}^{s} \qquad T_{1}(\vec{p}) \triangleq \sum_{i=1}^{n} p_{i} \tau_{i} D_{i} P_{i}^{a} G_{0}(\vec{p}) \triangleq -c_{a}^{s}$$

are constant with respect to u (i.e., biguadratic ratio)

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed	
gradient descent for	
constrained optimization	/

```
Closing remarks
```

Future directions*

Solitary agents

Solitary: Speed choice*

MultiIFD

Future*

After regrouping, new objective function

$$R(\vec{p}, u) = \frac{G_2(\vec{p})u^2 + G_1(\vec{p})u + G_0(\vec{q})}{T_2(\vec{p})u^2 + T_1(\vec{p})u + 1}$$

where coefficients

$$G_{2}(\vec{p}) \triangleq \sum_{i=1}^{n} D_{i} p_{i} g_{i} P_{i}^{\ell} \qquad T_{2}(\vec{p}) \triangleq \sum_{i=1}^{n} p_{i} \tau_{i} D_{i} P_{i}^{\ell} G_{1}(\vec{p}) \triangleq \sum_{i=1}^{n} D_{i} p_{i} P_{i}^{a} g_{i} - c_{\ell}^{s} \qquad T_{1}(\vec{p}) \triangleq \sum_{i=1}^{n} p_{i} \tau_{i} D_{i} P_{i}^{a} G_{0}(\vec{p}) \triangleq -c_{a}^{s}$$

are constant with respect to u (i.e., biguadratic ratio)

Find optimal u^* for each \vec{p}^* candidate (n+1 total)

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Because biquadratic objective, for each \vec{p}^* candidate,

$$\frac{\partial R(u)}{\partial u} = \frac{(G_2 T_1 - G_1 T_2)u^2 + 2(G_2 - G_0 T_2)u + (G_1 - G_0 T_1)}{\left(T_2 u^2 + T_1 u + 1\right)^2}$$

By KKT, if quadratic numerator root $u^* \in [u_{\min}, u_{\max}]$, then u^* is optimal speed; otherwise, optimal speed $u^* \in \{u_{\min}, u_{\max}\}$ based on sign of numerator

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

CTPN

MultiIFD

Future*

Because biquadratic objective, for each \vec{p}^* candidate,

$$\frac{\partial R(u)}{\partial u} = \frac{(G_2 T_1 - G_1 T_2)u^2 + 2(G_2 - G_0 T_2)u + (G_1 - G_0 T_1)}{\left(T_2 u^2 + T_1 u + 1\right)^2}$$

By KKT, if quadratic numerator root $u^* \in [u_{\min}, u_{\max}]$, then u^* is optimal speed; otherwise, optimal speed $u^* \in \{u_{\min}, u_{\max}\}$ based on sign of numerator

Implement (n + 1)-search algorithm on-line if D_i density estimates available (Pavlic and Passino 2009, Dubins' car AAV simulations with speed filtering)

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

Engineering Serendipity

CTPN

MultiIFD

Future*

Because biquadratic objective, for each \vec{p}^* candidate,

$$\frac{\partial R(u)}{\partial u} = \frac{(G_2 T_1 - G_1 T_2)u^2 + 2(G_2 - G_0 T_2)u + (G_1 - G_0 T_1)}{\left(T_2 u^2 + T_1 u + 1\right)^2}$$

By KKT, if quadratic numerator root $u^* \in [u_{\min}, u_{\max}]$, then u^* is optimal speed; otherwise, optimal speed $u^* \in \{u_{\min}, u_{\max}\}$ based on sign of numerator

Implement (n + 1)-search algorithm on-line if D_i density estimates available (Pavlic and Passino 2009, Dubins' car AAV simulations with speed filtering)

Non-trivial to guarantee convergence of density estimates on-line

Estimation process \implies type-III functional response

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

Engineering Serendipity

CTPN

MultiIFD

Future*

Because biquadratic objective, for each \vec{p}^* candidate,

$$\frac{\partial R(u)}{\partial u} = \frac{(G_2T_1 - G_1T_2)u^2 + 2(G_2 - G_0T_2)u + (G_1 - G_0T_1)}{\left(T_2u^2 + T_1u + 1\right)^2}$$

By KKT, if quadratic numerator root $u^* \in [u_{\min}, u_{\max}]$, then u^* is optin based **Future direction:** Augment advantage-to-disadvantage framework with on sl parameter representing speed.

Implement (10 1 1) search algorithm on mile in 12 g density estimates available (Pavlic and Passino 2009, Dubins' car AAV simulations with speed filtering)

Non-trivial to guarantee convergence of density estimates on-line

Estimation process \implies type-III functional response

		•
	Introduction	•
/	Solitary optimal	•
	Solitary optimal	•
	in biology and	•
	engineering	•
	engineering	•
	Cooperative task	•
	processing	•
		•
	MultiIFD: Distributed	•
	gradient descent for	•
	constrained optimization	•
		•
	Closing remarks	•
	Euturo directione*	
		•
	Solitary agents	•
	Solitary: Speed	•
	choice*	•
	CTPN	
	MultiIFD	•
	Future*	•
		•
		•

Future directions: cooperative task-processing networks*

*Omitted for brevity

Future directions: cooperative task-processing networks

Introduction	lr	ntr	od	uc	ti	ón	١
--------------	----	-----	----	----	----	----	---

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

CTPN

MultiIFD

Future*

- Optimal forwarding tendencies
- Simultaneous forwarding and volunteering tendencies
- Tendencies that vary across neighbors
- Incorporate processing time
- Reciprocity

In	tr	0	0	1.1	oti	\cap	n
	LL.	U	u	u	บแ	U	

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents Solitary: Speed choice*

CTPN

MultiIFD

Future*

Future directions: MultilFD gradient descent*

*Omitted for brevity

Future directions: MultiIFD gradient descent

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents

Solitary: Speed choice*

CTPN

MultiIFD

Future*

- Proof for multiple-constraint case
- I Proof for looser timing
- Non-linear (but likely convex) constraints
 - □ Methods for automatic commissioning
- Compare performance to other conventional intelligent lighting algorithms
- Exploration of implementation in non-lighting applications

Engineering Serendipity

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultilFD: Distributed gradient descent for constrained optimization

Closing remarks

Future directions*

Solitary agents Solitary: Speed choice^{*} CTPN

OTTIN

MultiIFD

Future*

Future future directions*

*Omitted for brevity

Future future directions*

Introduction

Solitary optimal task-processing agents in biology and engineering

Cooperative task processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions*

Contary ug

Solitary: Speed choice*

CTPN

MultiIFD

Future*

- Current–voltage/predator–prey analogy
 - □ Tunnel diode limit cycles
 - Extend circuit theory into ecological analysis
- I Tree dynamics
 - □ Game theoretic analysis of tree distributions
 - □ Tree growth as dynamic system
- Game theoretic analysis of energy efficiency bait-and-switch
 - □ Future pricing plans charge per service rather than/per kW-hour
 - Consumer incentive to upgrade to high-efficiency devices assumes long-term payoff
 - □ Long-term payoff vanishes when pricing model changes
 - ☐ Few now know of pricing changes