
Pre-talk food for thought: computational biomimicry

Engineering Serendipity Optimal Task-Processing Agents

1

1Compliments to XKCD: http://xkcd.com/720/.

http://xkcd.com/720/


Engineering Serendipity Optimal Task-Processing Agents

Engineering Serendipity: Design and Analysis of
Optimal Task-processing Agents

Presented in Partial Fulfillment of the Requirements for the Degre e of

Doctor of Philosophy

Theodore (Ted) P. Pavlic, B.S., M.S. – The Ohio State University

Department of Electrical and Computer Engineering

Monday, August 9, 2010, 2:30 PM

Dissertation Committee: Dr. Kevin M. Passino (Advisor, ECE), Dr. Andrea Serrani (ECE),
Dr. Atilla Eryilmaz (ECE), Dr. David Blau (GS Rep., Economics)



Overview

Introduction

Manufacturing
serendipity

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

Introduction

Solitary optimal task-processing agents in biology and eng ineering

Cooperative task processing

MultiIFD: Distributed gradient descent for constrained op timization

Closing remarks

Future directions ∗

∗Omitted for brevity



Manufacturing Serendipity

Introduction

Manufacturing
serendipity

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

1

� Nakrani and Tovey (2007): honeybees and Internet server allocation

1Compliments to XKCD: http://xkcd.com/720/.

http://xkcd.com/720/


Manufacturing Serendipity

Introduction

Manufacturing
serendipity

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

1

� Craig Tovey: “manufacture serendipity”

1Compliments to XKCD: http://xkcd.com/720/.

http://xkcd.com/720/


Engineering Manufacturing Serendipity

Introduction

Manufacturing
serendipity

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

1

� This dissertation: serendipity catalyst

1Compliments to XKCD: http://xkcd.com/720/.

http://xkcd.com/720/


Solitary optimal task-processing
agents in biology and engineering

� Unified framework (Pavlic and Passino 2010c)

� Impulsiveness explained∗ (Pavlic and Passino 2010a)

� Optimal sunk-cost effect (Pavlic and Passino 2010b)

∗Omitted for brevity
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� Diversity of tasks (grasshoppers, enemy vehicles,

probable underwater mines): n ∈ N types

� Tasks of type i ∈ {1, 2, . . . , n} have average

value gi(τi) for τi average time processing

� Darwinian fitness surrogate (e.g., calories)

� Economic value (e.g., dollars of profit)

� Design preference (e.g., threat level)

� Opportunity cost: ignore some tasks

� Rate maximization (MVT) for long runs

� Prey model 7→ Task choice

� Patch model 7→ Processing-time choice
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Optimal task processing for generalized solitary agents
(Pavlic and Passino 2010c)
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� Homomorphism:
Equivalence class: solitary

foragers
autonomous

vehicles
⇐⇒

� Diversity of tasks (grasshoppers, enemy vehicles,

probable underwater mines): n ∈ N types

� Tasks of type i ∈ {1, 2, . . . , n} have average

value gi(τi) for τi average time processing

� Darwinian fitness surrogate (e.g., calories)

� Economic value (e.g., dollars of profit)

� Design preference (e.g., threat level)

� Opportunity cost: ignore some tasks

� Rate maximization (MVT) for long runs

� Prey model ⇐⇒ Task choice

� Patch model ⇐⇒ Processing-time choice

� More general statements available

Bobwhite quail
(Gendron and
Staddon 1983)
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching

� Vehicle goes through i.i.d. cycles of searching and processing

� Ḡ: average per-encounter gain

� T̄ : average per-encounter search and processing time

� G(t): Markov renewal–reward process for accumulated gain
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Engineering Serendipity Optimal Task-Processing Agents

� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching

� Long runtime =⇒ maximize rate of return (i.e., gain ↑ & cycles ↑)

aslim
t→∞

G(t)

t
=

Ḡ

T̄
=

−cs +
n∑

i=1
λipigi

1 +
n∑

i=1
λipiτi

, R(~p)

Maximum rate R(~p∗) is an opportunity cost ; it represents the

minimum gain from an activity to justify its use of time.
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Engineering Serendipity Optimal Task-Processing Agents

� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching

� In general, pi ∈ [0, 1], but

∂R(~p)

∂pi
=

λigi

(

1 +
n∑

j=1
λjpjτj

)

− λiτi

(

−cs +
n∑

j=1
λjpjgj

)

(

1 +
n∑

i=1
λipiτi

)2
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Engineering Serendipity Optimal Task-Processing Agents

� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching

� So KKT reveals optimization is 2n combinatorial:

∂R(~p)

∂pi
=

λigi

(

1 +
n∑

j=1
j 6=i

λjpjτj

)

− λiτi

(

−cs +
n∑

j=1
j 6=i

λjpjgj

)

(

1 +
n∑

i=1
λipiτi

)2

∇i = 0

> 0

Property called the zero–one rule because ∃~p∗ : p∗i ∈ {0, 1}.
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Engineering Serendipity Optimal Task-Processing Agents

� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching

� Classical prey ranking refines 2n search to n+ 1 search:

Processed types (p∗i = 1)
︷ ︸︸ ︷
g1
τ1

>
g2
τ2

> · · · >
gk∗

τk∗
>

Optimal rate R(~p∗)
︷ ︸︸ ︷

−cs +
k∗∑

i=1
λigi

1 +
k∗∑

i=1
λiτi

>

Ignored types (p∗i = 0)
︷ ︸︸ ︷
gk∗+1

τk∗+1
> · · · >

gn
τn

where optimal p∗i = [i ≤ k∗] with k∗ ∈ {0, 1, . . . , n}.
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� Autonomous vehicle faces n-way merged Poisson process

� λi: encounter rate for task of type i

� (gi , gi(τi), τi): mean (value, time) per type-i processing

� pi: probability that type-i task is processed (decision variable)

� cs: cost per-unit-time of searching

� Classical prey ranking refines 2n search to n+ 1 search:

Processed types (p∗i = 1)
︷ ︸︸ ︷
g1
τ1

>
g2
τ2

> · · · >
gk∗

τk∗
>

Optimal rate R(~p∗)
︷ ︸︸ ︷

−cs +
k∗∑

i=1
λigi

1 +
k∗∑

i=1
λiτi

>

Ignored types (p∗i = 0)
︷ ︸︸ ︷
gk∗+1

τk∗+1
> · · · >

gn
τn

where optimal p∗i = [i ≤ k∗] with k∗ ∈ {0, 1, . . . , n}.

Behavioral heuristic for encounter ℓ at time t(ℓ)

pi(ℓ) =

[
gi(ℓ)

τi(ℓ)
>

G(t(ℓ))

t(ℓ)

]

(Iverson bracket)

can calculate rate-maximizing prey choice in real time without

sorting and searching (Pavlic and Passino 2010a).
Foreshadowing



Advantage-to-disadvantage optimization for n ∈ N task types
(Pavlic and Passino 2010c)

Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Autonomous vehicles
and foraging

Prey model

Advantage-to-
disadvantage
functions

Finite-event scenario

Impulsiveness and
operant conditioning∗

Sunk-cost effect

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

� Generalized autonomous agent faces n ∈ N types of tasks

� pi ∈ [p−i , p
+
i ] ⊆ [0, 1]: decision variable

� τi ∈ [τ−i , τ+i ] ⊆ R≥0: decision variable

� ai, di : [τ
−
i , τ+i ] 7→ R: type i (dis)advantage ai(τi) (di(τi))

� a, d ∈ R: background environmental (dis)advantage
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Engineering Serendipity Optimal Task-Processing Agents

� Generalized autonomous agent faces n ∈ N types of tasks

� pi ∈ [p−i , p
+
i ] ⊆ [0, 1]: decision variable

� τi ∈ [τ−i , τ+i ] ⊆ R≥0: decision variable

� ai, di : [τ
−
i , τ+i ] 7→ R: type i (dis)advantage ai(τi) (di(τi))

� a, d ∈ R: background environmental (dis)advantage

� Generalized advantage-to-disadvantage objective:

maximize J(~p, ~τ) ,

a+
n∑

i=1
piai(τi)

d+
n∑

i=1
pidi(τi)

Form generalized prey/patch algorithms for special

{a, a1, . . ., an, d, d1, . . ., dn} cases.
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Engineering Serendipity Optimal Task-Processing Agents

� Generalized autonomous agent faces n ∈ N types of tasks

� pi ∈ [p−i , p
+
i ] ⊆ [0, 1]: decision variable

� τi ∈ [τ−i , τ+i ] ⊆ R≥0: decision variable

� ai, di : [τ
−
i , τ+i ] 7→ R: type i (dis)advantage ai(τi) (di(τi))

� a, d ∈ R: background environmental (dis)advantage

� Generalized prey algorithm: di(τi) ≡ di 6= 0 non-zero constant

Optimal τ∗i = argmax
τi∈[τ

−
i ,τ+i ]

ai(τi)

di(τi)
(Max profitability)

Optimal p∗i ∈ {p−i , p
+
i } (Extreme-preference rule)

for each type i ∈ {1, 2, . . . , n}.
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� Generalized autonomous agent faces n ∈ N types of tasks

� pi ∈ [p−i , p
+
i ] ⊆ [0, 1]: decision variable

� τi ∈ [τ−i , τ+i ] ⊆ R≥0: decision variable

� ai, di : [τ
−
i , τ+i ] 7→ R: type i (dis)advantage ai(τi) (di(τi))

� a, d ∈ R: background environmental (dis)advantage

� Generalized profitability ranking ((n+ 1) search):

More-preferred types (p∗i = p+i )
︷ ︸︸ ︷

a1(τ
∗
1 )

d1(τ∗1 )
> · · · >

ak∗(τ
∗
k∗)

dk∗(τ
∗
k∗)

>

Optimal J(~p∗, ~τ∗)
︷ ︸︸ ︷

a+
n∑

i=1
pk

∗

i ai(τ
∗
i )

d+
n∑

i=1
pk

∗

i di(τ∗i )

>

Less-preferred types (p∗i = p−i )
︷ ︸︸ ︷

ak∗+1(τ
∗
k∗+1)

dk∗+1(τ
∗
k∗+1)

> · · · >
an(τ

∗
n)

dn(τ∗n)

where pki , [i ≤ k]p+i + [i > k]p−i and k∗ ∈ {0, 1, . . . , n}.
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Engineering Serendipity Optimal Task-Processing Agents

� Generalized autonomous agent faces n ∈ N types of lumped tasks

� τ∗i = τ−i = τ+i for all i ∈ {1, 2, . . . , n}

� [p−i , p
+
i ] = [0, 1] for all i ∈ {1, 2, . . . , n}
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Engineering Serendipity Optimal Task-Processing Agents

� Generalized autonomous agent faces n ∈ N types of lumped tasks

� τ∗i = τ−i = τ+i for all i ∈ {1, 2, . . . , n}

� [p−i , p
+
i ] = [0, 1] for all i ∈ {1, 2, . . . , n}

� Payload only supports N ∈ N tasks serviced

� N packages (food, artillery) to deploy

� N eggs to oviposit (e.g., parasitoid oviposition)
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Engineering Serendipity Optimal Task-Processing Agents

� Generalized autonomous agent faces n ∈ N types of lumped tasks

� τ∗i = τ−i = τ+i for all i ∈ {1, 2, . . . , n}

� [p−i , p
+
i ] = [0, 1] for all i ∈ {1, 2, . . . , n}

� Payload only supports N ∈ N tasks serviced

� N packages (food, artillery) to deploy

� N eggs to oviposit (e.g., parasitoid oviposition)

� Objective: Accumulate GT ∈ R value by end-of-life

� Threshold for mission to be considered success

� Threshold for genes proliferation/survival to next foraging bout
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� Generalized autonomous agent faces n ∈ N types of lumped tasks

� τ∗i = τ−i = τ+i for all i ∈ {1, 2, . . . , n}

� [p−i , p
+
i ] = [0, 1] for all i ∈ {1, 2, . . . , n}

� Payload only supports N ∈ N tasks serviced

� N packages (food, artillery) to deploy

� N eggs to oviposit (e.g., parasitoid oviposition)

� Objective: Accumulate GT ∈ R value by end-of-life

� Threshold for mission to be considered success

� Threshold for genes proliferation/survival to next foraging bout

� Rate maximization assumptions not valid for this case
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� Static alternative to stochastic dynamic programming:

maximize J(~p, ~τ) ,
E(G(TN ))−GT

E(TN )
(“Excess rate”)

=

−cs +
n∑

i=1
λipi

(

gi(τi)−
GT

N

)

1 +
n∑

i=1
λipiτi

where TN , (time after N th processed task).
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� Static alternative to stochastic dynamic programming:

maximize J(~p, ~τ) ,
E(G(TN ))−GT

E(TN )
(“Excess rate”)

=

−cs +
n∑

i=1
λipi

(

gi(τi)−
GT

N

)

1 +
n∑

i=1
λipiτi

where TN , (time after N th processed task).

� Generalized profitability for i ∈ {1, 2, . . . , n}:

ai(τ
∗
i )

di(τ∗i )
,

gi(τ
∗
i )−

GT

N

τ∗i

Ranking depends on success threshold GT (matches SDP).
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n = 5 task types, N = 300 tasks per mission, 100 Monte Carlo samples (mean ± SEM)

G
T
=

9
0
0
0 Take all Classical Excess estClassical estExcess

G(TN ): 16565± 30 10946± 16 20473± 25 11218± 128 18119± 38
≥ GT : 100% 100% 100% 98% 100%

TN : 11119± 42 4391± 8 9227± 13 4567± 63 11668± 43

G
T
=

1
3
5
0
0 Take all Classical Excess estClassical estExcess

G(TN ): 16642± 33 10958± 16 25153± 11 11270± 103 18647± 44
≥ GT : 100% 0% 100% 5% 100%

TN : 11158± 38 4393± 8 15645± 42 4586± 50 12779± 46

G
T
=

1
6
5
0
0 Take all Classical Excess estClassical estExcess

G(TN ): 16546± 34 10993± 16 25141± 14 10965± 91 18796± 39
≥ GT : 55% 0% 100% 0% 100%

TN : 11092± 40 4421± 8 15605± 53 4440± 43 13120± 44

(λ1, g1, τ1) = (0.5, 30, 10), (λ2, g2, τ2) = (0.25, 50, 20), (λ3, g3, τ3) = (0.4, 80, 35),

(λ4, g4, τ4) = (0.1, 100, 110), (λ5, g5, τ5) = (0.8, 55, 50), cs = 0.1

� Take high gain only: 29700 (36000 time )

� Take high profitability only: 8940 (3600 time)

� Take high excess profitability only: 23925 (11250 time )
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� Laboratory impulsiveness (Ainslie 1974; Bateson and Kacelnik

1996; Bradshaw and Szabadi 1992; Green et al. 1981; McDiarmid

and Rilling 1965; Rachlin and Green 1972; Siegel and Rachlin 1995;

Snyderman 1983; Stephens and Anderson 2001)
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� Laboratory impulsiveness

� Using starvation, animals are trained to use a Skinner box

� Repeat mutually exclusive binary-choice trials (at low weight)
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Engineering Serendipity Optimal Task-Processing Agents

� Laboratory impulsiveness

� Using starvation, animals are trained to use a Skinner box

� Repeat mutually exclusive binary-choice trials (at low weight)

� What can be inferred about Skinner box results?

� Violates assumption that simultaneous encounters occur with

probability zero (Poisson assumption)

� Mutually exclusive choice unlikely when prey is immobile

� Impulsiveness vanishes for patch decision (Stephens et al. 2004)

� Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)
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� Laboratory impulsiveness

� Using starvation, animals are trained to use a Skinner box

� Repeat mutually exclusive binary-choice trials (at low weight)

� What can be inferred about Skinner box results?

� Violates assumption that simultaneous encounters occur with

probability zero (Poisson assumption)

� Mutually exclusive choice unlikely when prey is immobile

� Impulsiveness vanishes for patch decision (Stephens et al. 2004)

� Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

� Skinner trials are worst-case scenario for a robot

� Predisposes robots to underestimate (adds suboptimal eq.)
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� Laboratory impulsiveness

� Using starvation, animals are trained to use a Skinner box

� Repeat mutually exclusive binary-choice trials (at low weight)

� What can be inferred about Skinner box results?

� Violates assumption that simultaneous encounters occur with

probability zero (Poisson assumption)

� Mutually exclusive choice unlikely when prey is immobile

� Impulsiveness vanishes for patch decision (Stephens et al. 2004)

� Attention (Monterosso and Ainslie 1999; Siegel and Rachlin 1995)

� Skinner trials are worst-case scenario for an animal?

� Predisposes animals to underestimate? (adds suboptimal eq.)
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� Graphical description of optimal prey choice:

Processing time
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For type i: or @ (processing time τi, gain g(τi))

(τ1, g1)

(τ2, g2)

(τ3, g3)

(τ4, g4)

(τ5, g5)
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� Graphical description of optimal prey choice:
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For type i: or @ (processing time τi, gain g(τi))

(τ1, g1)

(τ2, g2)

(τ3, g3)

(τ4, g4)

(τ5, g5)
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R∗

=⇒

t: Total search and processing time

G
(t
):

A
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u
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d
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ga
in

Type-# encounter: # (Process) or # (Ignore)

g1

τ1

g2

τ2

g3

τ3

g4

τ4

g5

τ5

R∗

1

2

2

1

3 3

4 5

Process encounter k when gi(k)/τi(k) > G(t(k))/t(k)
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Process encounter k when gi(k)/τi(k) > G(t(k))/t(k)

� Rule (even with mistakes) is optimal facing Poisson encounters (i.e.,

simultaneous w.p.0)



Ecological rationality: Operant laboratory impulsiveness ∗

(Pavlic and Passino 2010a)

Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Autonomous vehicles
and foraging

Prey model

Advantage-to-
disadvantage
functions

Finite-event scenario

Impulsiveness and
operant conditioning∗

Sunk-cost effect

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

� Graphical description of optimal prey choice:
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Process encounter k when gi(k)/τi(k) > G(t(k))/t(k)

� Rule (even with mistakes) is optimal facing Poisson encounters (i.e.,

simultaneous w.p.0)

� Digestive rate constraints (bi: prey bulk) (Hirakawa 1995):

n∑

i=1
λipibi

1 +
n∑

i=1
λipiτi

≤ B
KKT
=⇒

p∗1 = 1

...

p∗k∗−1 = 1

p∗k∗ ∈ [0, 1]

Partial Preferences
(rank by gi/bi)

Digression
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� Rule (even with mistakes) is optimal facing Poisson encounters (i.e.,
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� Ecological–physiological hybrid method (Whelan and Brown 2005):

Asymptotic gut constraint ⇐⇒ Rank by
gi

τi + τ bi

Digression
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� Rule (even with mistakes) is optimal facing Poisson encounters (i.e.,

simultaneous w.p.0)

� Ecological–physiological hybrid method (Whelan and Brown 2005):

Asymptotic gut constraint ⇐⇒ Rank by
gi

τi + τ bi

� Process encounter k when gi(k)/(τi(k) + τ b
i(k)) > G(t(k))/t(k)

t: Search and non-ballast handling time

G
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� Attention: simultaneous encounter (w.p.0) =⇒ low time first
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� Attention: simultaneous encounter (w.p.1) =⇒ low time first
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� Attention: simultaneous encounter (w.p.1) =⇒ either first

� Lucky runs accumulate high initial estimate

� Lucky forager specializes; unlucky forager generalizes
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� Attention: simultaneous encounter (w.p.1) =⇒ low time first

� Rescue optimality with early ad libitum feeding
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swan foraging

� Sunk-cost observations are consistent with rate maximization when

patch entry costs are modeled (unconventional). For n = 1,

R(τ1) =
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1
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where {a < b < c} , |g1(0) < 0|

g1(τ1)

τ1

−b

−c

− 1
λ1

R∗
c

τ∗1cτ∗1b

Due to entry costs, searching is a less desirable task.

� May explain some overstaying as well (Nonacs 2001)



Distributed task processing

� Cooperative task processing (Pavlic and Passino 2010d)

� Separable constraints (Cartesian product)

� Parallel Nash equilibrium solver

� MultiIFD constrained gradient descent

� Polyhedral constraint set

� Distributed Pareto equilibrium solver
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Cooperative breeding
(Hamilton and Taborsky 2005)
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Evolution of cooperation
(Axelrod 1984; Hamilton 1964; Nowak 2006; Ohtsuki et al. 2006; T rivers 1971)
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� A cooperates with B if cA < r bB where relatedness r , Pr(shared gene)
(Hamilton 1964)

� Diploid sexual organisms: Hamilton’s rule =⇒ “Haldane’s policy”
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� “No, but I would to save two brothers or eight cousins.” (J.B.S. Haldane;
whether he would die to save a drowning brother)

� A cooperates with B if cA < r bB where relatedness r , Pr(shared gene)
(Hamilton 1964)

� Diploid sexual organisms: Hamilton’s rule =⇒ “Haldane’s policy”

� Reciprocity can be surrogate for genetic relatedness (Trivers 1971)

� (Axelrod 1984; Axelrod and Hamilton 1981): r ∼ Pr(future encounter)

� Interactions on graphs ensure repeated interactions (Ohtsuki et al. 2006)

� r ∼ 1/(degree)

� Hamilton’s rule is pervasive (Nowak 2006) FORESHADOWING
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Cooperative patrol
(Finke and Passino 2007; Finke et al. 2006; Gil et al. 2008)
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(Giraldeau and Caraco 2000; Stephens and Krebs 1986)
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Example TPN: Eusocial breeders?
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Flexible manufacturing system
(Cruz 1991; Perkins and Kumar 1989)

Engineering Serendipity Optimal Task-Processing Agents

Input queues:

Primary processing: 1 2

Secondary processing: 3 4 5

1 2 1 2 3

λ1
1 λ2

1 λ1
2 λ2

2 λ3
2

Flexible manufacturing system (FMS)



Example TPN: Flexible manufacturing system
(Pavlic and Passino 2010d)

Engineering Serendipity Optimal Task-Processing Agents

Input streams (k ∈ Yj ⊆ {1, 2, 3}):
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� A ⊂ N: Task-processing agents

� Conveyor j ∈ V ⊆ A has |Yj ⊂ N| > 0 types of incoming task orders

� Task orders of type k ∈ Yj arrive at conveyor j at rate λk
j ∈ R≥0

� Cooperator i ∈ C ⊆ A responds to γi ∈ [0, 1] broadcasts from conveyors Vi ⊆ V

� Conveyor j broadcasts πk
j ∈ [0, 1] type-k arrivals to cooperators Cj ⊆ C

Similar models exist for network congestion control (Altman et al. 2005a,b;

Buttyán and Hubaux 2003; Shakkottai et al. 2006).

� Messages move from source to destination;

each message is broadcasted to all adjacent nodes.

� Intermediate nodes choose whether to pass or drop each message.

� Distributed policy is designed so Nash equilibrium solution is non-trivial.

Optimal multi-hop message-passing networks
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� Messages move from source to destination;

each message is broadcasted to all adjacent nodes.

� Intermediate nodes choose whether to pass or drop each message.

� Distributed policy is designed so Nash equilibrium solution is non-trivial.

Not ideal for
task processing .

Optimal multi-hop message-passing networks
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� Let

� I ⊆ A ⊂ N: finite index set

� Ω , {γi}i∈I : indexed family with γi ∈ [0, 1] for each i ∈ I

For g, h ∈ N and Γ ⊆ I , define SOBP and SOMS so

SOBPg(Γ) ,

|Γ|
∑

ℓ=0

1

g + ℓ

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

SOMSh(Γ) ,

|Γ|
∑

ℓ=0

(−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

.

� Properties of SOBP and SOMS provide bounds for convergence

analysis (i.e., Lyapunov/non-deterministic set stability).
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� For g, h ∈ N and Γ ⊆ I ,

SOBPg(Γ) ,

|Γ|
∑

ℓ=0

1

g + ℓ

∑

C⊆Γ
|C|=ℓ

((
∏

i∈C

γi

)(
∏

k∈Γ−C

(1− γk)

))

� For Γ ⊆ A, SOBP1({i, k, ℓ} − {i}) is

(1− γk)(1− γℓ) +
1

2
γk(1− γℓ) +

1

2
γℓ(1− γk) +

1

3
γkγℓ

(i.e., sum of binomial products). For conveyor j ∈ V and cooperator

i ∈ Cj = {i, k, ℓ}, SOBP1({i, k, ℓ} − {i}) is the probability that

i is chosen to process an advertised task from j ∈ Vi (given that it

volunteered).
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(i.e., sum of binomial products). For conveyor j ∈ V and cooperator

i ∈ Cj = {i, k, ℓ}, SOBP1({i, k, ℓ} − {i}) is the probability that

i is chosen to process an advertised task from j ∈ Vi (given that it

volunteered).

� SOMS gives slope and curvature information about SOBP.
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Agent utility function: rate of gain
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For cooperator i ∈ C, its local rate of gain

Ui(~γ) ,

Conveyor part — constant with respect to γi
︷ ︸︸ ︷

bi +

(

1−
∏

j∈Ci

(1− γj)

)

︸ ︷︷ ︸

Pr(Volunteer from Ci|Advertisement from i)

ri + γi
∑

j∈Vi

(
−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

SOBP1(Cj − {i})cij
)

︸ ︷︷ ︸

Cooperator part

Costs and benefits of local processing on i ∈ V :

bi ,
∑

k∈Yi

λk
i

(
bki − cki

)

ri ,
∑

k∈Yi

λk
i π

k
i

(
rki −

(
bki − cki

))

Costs and benefits to i ∈ C for volunteering for
tasks exported from j ∈ Vi:

cij ,
∑

k∈Yj

λk
jπ

k
j c

k
ij
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For cooperator i ∈ C, its local rate of gain

Ui(~γ) ,

Conveyor part — constant with respect to γi
︷ ︸︸ ︷

bi +

(

1−
∏

j∈Ci

(1− γj)

)

︸ ︷︷ ︸

Pr(Volunteer from Ci|Advertisement from i)

ri −Qipi(Qi) + γi
∑

j∈Vi

(
pij(Qj)−

Pr(i awarded task from j|i volunteers)
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SOBP1(Cj − {i})cij
)
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Cooperator part — γi and Qj vary with γi

Costs and benefits of local processing on i ∈ V :
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k
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i π

k
i p

k
i (Qi)

Costs and benefits to i ∈ C for volunteering for
tasks exported from j ∈ Vi:
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λk
jπ

k
j c

k
ij

pij(Qj) ,
∑

k∈Yj

λk
jπ

k
j q

k
ijp

k
j (Qj)

Fictitious payment functions added as stabilizing controls (“quantity” Qi ,
∑

j∈Ci
γj ).
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� Each agent operates on a possibly outdated copy of ~γ.

� Asynchronous system is described by difference inclusion.
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� Totally asynchronous parallel computation of ~γ∗ by local gradient

ascent

� Agents iterate asynchronously.

� Each agent operates on a possibly outdated copy of ~γ.

� Asynchronous system is described by difference inclusion.

� It is sufficient to show synchronous transition mapping is a

contraction with respect to maximum norm

(‖~γ‖∞ , maxi∈C{|γi|}).

� A unique equilibrium exists and is asymptotically stable.
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Engineering Serendipity Optimal Task-Processing Agents

� Totally asynchronous parallel computation of ~γ∗ by local gradient

ascent

� Agents iterate asynchronously.

� Each agent operates on a possibly outdated copy of ~γ.

� Asynchronous system is described by difference inclusion.

� It is sufficient to show synchronous transition mapping is a

contraction with respect to maximum norm

(‖~γ‖∞ , maxi∈C{|γi|}).

� A unique equilibrium exists and is asymptotically stable.

� Constraints on topology and payment functions ensure contraction.
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� For k ∈ N, p : [0, k] 7→ R is a stabilizing payment function if

� p′(Q) , dp(Q)/dQ < 0 for all Q ∈ [0, k].

� p′′(Q) , d2p(Q)/dQ2 > 0 for all Q ∈ [0, k].

� γp′′(Q) ≤ −p′(Q) for all Q ∈ [γ, k − (1− γ)] with γ ∈ [0, 1].
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� For k ∈ N, p : [0, k] 7→ R is a stabilizing payment function if

� p′(Q) , dp(Q)/dQ < 0 for all Q ∈ [0, k].

� p′′(Q) , d2p(Q)/dQ2 > 0 for all Q ∈ [0, k].

� γp′′(Q) ≤ −p′(Q) for all Q ∈ [γ, k − (1− γ)] with γ ∈ [0, 1].

� For k ∈ {0, 1, . . . , |C|}, a conveyor j ∈ V is called a k-conveyor if it has
k outgoing connections (i.e., |Cj | = k).
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� Assume that:

1. For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function.
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� Assume that:

1. For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function.

2. For all j ∈ V , |Cj | ≤ 3 (i.e., no conveyor can have more than 3
outgoing links to cooperators; each conveyor is a k-conveyor where
k ∈ {0, 1, 2, 3}).
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� Assume that:

1. For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function.

2. For all j ∈ V , |Cj | ≤ 3 (i.e., no conveyor can have more than 3
outgoing links to cooperators; each conveyor is a k-conveyor where
k ∈ {0, 1, 2, 3}).

3. For cooperator i ∈ C and j ∈ Vi, if j is a 3-conveyor (i.e., |Cj | = 3),
then there must be some other conveyor k ∈ Vi that is a 2-conveyor
(i.e., |Ck| = 2).
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3. For cooperator i ∈ C and j ∈ Vi, if j is a 3-conveyor (i.e., |Cj | = 3),
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Define T : [0, 1]n 7→ [0, 1]n by T (~γ) , (T1(~γ), T2(~γ), . . . , Tn(~γ)) where, for
each i ∈ C,

Ti(~γ) , min{1,max{0, γi + σi∇iUi(~γ)}}

Projected gradient ascent
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Define T : [0, 1]n 7→ [0, 1]n by T (~γ) , (T1(~γ), T2(~γ), . . . , Tn(~γ)) where, for
each i ∈ C,

Ti(~γ) , min{1,max{0, γi + σi∇iUi(~γ)}},
where

1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)|

for all ~γ ∈ [0, 1]n.
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Define T : [0, 1]n 7→ [0, 1]n by T (~γ) , (T1(~γ), T2(~γ), . . . , Tn(~γ)) where, for
each i ∈ C,

Ti(~γ) , min{1,max{0, γi + σi∇iUi(~γ)}},
where

1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)|

for all ~γ ∈ [0, 1]n. If

min
j∈Vi

|p′ij (|Cj |) | >

(

|Vi| −
1

2

)

max
j∈Vi

|cij | for all i ∈ C,

then the totally asynchronous distributed iteration (TADI) sequence {~γ(t)}
generated with mapping T and the outdated estimate sequence {~γi(t)} for all
i ∈ C each converge to the unique Nash equilibrium ~γ∗ of the cooperation game.
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Define T : [0, 1]n 7→ [0, 1]n by T (~γ) , (T1(~γ), T2(~γ), . . . , Tn(~γ)) where, for
each i ∈ C,

Ti(~γ) , min{1,max{0, γi + σi∇iUi(~γ)}},
where

1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)|

for all ~γ ∈ [0, 1]n. If

Benefit
︷ ︸︸ ︷

min
j∈Vi

|p′ij (|Cj |) | >

1/(Relatedness)
︷ ︸︸ ︷
(

|Vi| −
1

2

) Cost
︷ ︸︸ ︷

max
j∈Vi

|cij | for all i ∈ C,

∼ Hamilton’s rule

on networks

then the totally asynchronous distributed iteration (TADI) sequence {~γ(t)}
generated with mapping T and the outdated estimate sequence {~γi(t)} for all
i ∈ C each converge to the unique Nash equilibrium ~γ∗ of the cooperation game.
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Equilibrium in AAV patrol scenario

� Simulation converges to predicted Nash equilibrium
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Equilibrium in AAV patrol scenario

� Simulation converges to predicted Nash equilibrium

� Increases in one encounter rate (e.g., λ2) cause equilibrium shift so

neighbors (e.g., 1 and 3) help more and agent (e.g., 2) helps less
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Equilibrium in AAV patrol scenario

� Simulation converges to predicted Nash equilibrium

� Increases in one encounter rate (e.g., λ2) cause equilibrium shift so

neighbors (e.g., 1 and 3) help more and agent (e.g., 2) helps less

� Emergence due to market coupling from network cycles
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� Let m,n ∈ N and X ⊆ R
n equipped with product topology.

� For each j ∈ {1, 2, . . . ,m}, ~aj ∈ R
n and cj ∈ R.

� The focal optimization problem:

minimize F (~x)

subject to A~x ≥ ~c

where A , [~a1,~a2, . . . ,~am]⊤ and ~c , [c1, c2, . . . , cm]⊤.
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� Let m,n ∈ N and X ⊆ R
n equipped with product topology.

� For each j ∈ {1, 2, . . . ,m}, ~aj ∈ R
n and cj ∈ R.

� The focal optimization problem:

minimize F (~x)

subject to A~x ≥ ~c

where A , [~a1,~a2, . . . ,~am]⊤ and ~c , [c1, c2, . . . , cm]⊤.

� To show: Interdisciplinary connections.



Focal optimization problem

Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

� Let m,n ∈ N and X ⊆ R
n equipped with product topology.

� For each j ∈ {1, 2, . . . ,m}, ~aj ∈ R
n and cj ∈ R.

� The focal optimization problem:

minimize F (~x)

subject to A~x ≥ ~c

where A , [~a1,~a2, . . . ,~am]⊤ and ~c , [c1, c2, . . . , cm]⊤.

� To show: Interdisciplinary connections.

� Distributed parallel solvers for this problem are not trivial.

� Usually parallelizable dual-space methods are effectively centralized.

� To show: Amenable to parallelization in primal space (matches
eusocial insects?).



Social foraging: the ideal free distribution (IFD)
(Fretwell 1972; Fretwell and Lucas 1969; Stephens et al. 2007)
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� Habitat in which animals self allocate according to IFD:

� N ∈ N foragers free to move among n ∈ N locations.

� The ideal forager knows the suitability si(xi) of each

location i ∈ {1, 2, . . . , n} with xi ∈ [0, N ] occupants.

� Suitabilities are monotonically decreasing.

� Sufficiently small number of foragers continuously move away

from lower suitability toward higher suitability.
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� Graphical IFD with equilibrium suitability ℓ∗ ∈ R>0:
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� Matches KKT characterization of solution to:

maximize

n∑

i=1

∫ xi

0
si(τ) dτ

subject to x1 + x2 + · · ·+ xn = N

KKT conditions:

si(x
∗
i ) = ℓ∗

or
si(0) < ℓ∗ and x∗

i = 0
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� Matches KKT characterization of solution to:

maximize

n∑

i=1

∫ xi

0
si(τ) dτ

subject to x1 + x2 + · · ·+ xn ≤ N

KKT conditions:

si(x
∗
i ) = ℓ∗

or
si(0) < ℓ∗ and x∗

i = 0

ℓ∗ > 0,
and so

an inequality
constraint is active
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� Matches KKT characterization of solution to:

maximize

n∑

i=1

Gi(xi)

subject to x1 + x2 + · · ·+ xn ≤ N

KKT conditions:

si(x
∗
i ) = ℓ∗

or
si(0) < ℓ∗ and x∗

i = 0

ℓ∗ > 0,
and so

an inequality
constraint is active

Eusocial insects maximizing colony gain with up to N foragers?
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� Economic formulation:

� For i ∈ {1, 2, . . . , n} and xi ∈ R≥0, let price

pi(xi) , 1/si(xi).
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� Economic formulation:

� For i ∈ {1, 2, . . . , n} and xi ∈ R≥0, let price

pi(xi) , 1/si(xi).

� Prices are monotonically increasing.

� Foragers seeking highest suitability ⇐⇒ foragers seeking lowest

price.
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� Economic formulation:

� For i ∈ {1, 2, . . . , n} and xi ∈ R≥0, let price

pi(xi) , 1/si(xi).

� Prices are monotonically increasing.

� Foragers seeking highest suitability ⇐⇒ foragers seeking lowest

price.

� Price IFD with market price λ∗ , 1/ℓ∗:

1

si(x∗i )
= pi(x

∗
i ) = λ∗ =

1

ℓ∗

or

1

si(0)
= pi(0) > λ∗ =

1

ℓ∗
and x∗i = 0
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� Economic formulation:

� For i ∈ {1, 2, . . . , n} and xi ∈ R≥0, let price

pi(xi) , 1/si(xi).

� Prices are monotonically increasing.

� Foragers seeking highest suitability ⇐⇒ foragers seeking lowest

price.

� Price IFD with market price λ∗ , 1/ℓ∗:

1

si(x∗i )
= pi(x

∗
i ) = λ∗ =

1

ℓ∗

or

1

si(0)
= pi(0) > λ∗ =

1

ℓ∗
and x∗i = 0

Occupied patch
at market price.

Otherwise, entry
price is too high.
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� Graphical IFD with equilibrium price λ∗ ∈ R>0:

Patch occupants
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x∗3 x∗1x∗2+ + = N

λ < λ∗

λ → λ∗
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� Graphical IFD with equilibrium price λ∗ ∈ R>0:

Patch occupants
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minimize

n∑

i=1

∫ xi

0
pi(τ) dτ

subject to x1 + x2 + · · ·+ xn = N

KKT conditions:

pi(x
∗
i ) = λ∗

or
pi(0) > λ∗ and x∗

i = 0
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pi(τ) dτ

subject to x1 + x2 + · · ·+ xn ≥ N

KKT conditions:
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� Graphical IFD with equilibrium price λ∗ ∈ R>0:

Patch occupants

P
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x1, x2, x3

p1(x1), p2(x2), p3(x3)

p1

p2

p3

λ∗

x∗3 x∗1x∗2+ + = N

λ < λ∗

λ → λ∗

� Matches KKT characterization of solution to:

minimize

n∑

i=1

Ci(xi)

subject to x1 + x2 + · · ·+ xn ≥ N

KKT conditions:

pi(x
∗
i ) = λ∗

or
pi(0) > λ∗ and x∗

i = 0

λ∗ > 0,
and so

an inequality
constraint is active

Eusocial insects minimizing colony cost with at least N foragers?



Social foraging: the ideal free distribution (IFD)

Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Focal problem

Social foraging

Power generation

Intelligent lights

Distributed solver

Simulation

Experiment

Closing remarks

Future directions∗

Engineering Serendipity Optimal Task-Processing Agents

� Graphical IFD with equilibrium price λ∗ ∈ R>0:

Patch occupants
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λ < λ∗

λ → λ∗

� Matches KKT characterization of solution to:

minimize F (~x)

subject to a11x1 + a12x2 + · · ·+ a1nxn ≥ c1

(e.g., x1 + · · ·+ xn)

KKT conditions:

pi(x
∗
i )

a1i
= λ∗

or
pi(0)

a1i
> λ∗ and x∗

i = 0

Eusocial insects meeting nutrient constraint at lowest cost (e.g., total

number of foragers)?
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Eusocial insects meeting nutrient constraint at lowest cost (e.g., total

number of foragers)?
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� For example, if F (~x) = ‖~x‖22 = x2
1 + · · ·+ x2

n, then x∗
i > 0 for all

i ∈ {1, 2, . . . , n}; in particular,

x∗
i = c1

a1i
a112 + a122 + · · ·+ a1n2

pi(x
∗
i )

a1i
=

∇iF (x∗
i )

a1i
=

2c1
a112 + a122 + · · ·+ a1n2

= λ∗

where price pi(xi) = 2xi.

Equilibrium distribution for
F (~x) = ‖~x‖1 = x1 + x2 + · · ·+ xn

allocates all foragers to patch
argmax{a1i : i ∈ {1, 2, . . . , n}}.

It may be valuable to increase spread of distribution.
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� For example, if F (~x) = ‖~x‖22 = x2
1 + · · ·+ x2

n, then x∗
i > 0 for all

i ∈ {1, 2, . . . , n}; in particular,

x∗
i = c1

a1i
a112 + a122 + · · ·+ a1n2

pi(x
∗
i )

a1i
=

∇iF (x∗
i )

a1i
=

2c1
a112 + a122 + · · ·+ a1n2

= λ∗

where price pi(xi) = 2xi.

� Equilibrium distribution matches classical IFD with

si(xi) =
a1i
2xi

and N = c1
a11 + a12 + · · ·+ a1n

a112 + a122 + · · ·+ a1n2
and ℓ∗ =

1

λ∗

for i ∈ {1, 2, . . . , n}.
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� For example, if F (~x) = ‖~x‖22 = x2
1 + · · ·+ x2

n, then x∗
i > 0 for all

i ∈ {1, 2, . . . , n}; in particular,

x∗
i = c1

a1i
a112 + a122 + · · ·+ a1n2

pi(x
∗
i )

a1i
=

∇iF (x∗
i )

a1i
=

2c1
a112 + a122 + · · ·+ a1n2

= λ∗

where price pi(xi) = 2xi.

� Equilibrium distribution matches classical IFD with

si(xi) =
a1i
2xi

and N = c1
a11 + a12 + · · ·+ a1n

a112 + a122 + · · ·+ a1n2
and ℓ∗ =

1

λ∗

for i ∈ {1, 2, . . . , n}.

� So nutrient-constrained cost-minimizing IFD modulates necessary N with
constraints and environment.
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� Where there’s one nutrient, there may be others. Let m > 1:

minimize F (~x)

subject to a11x1 + a12x2 + · · · + a1nxn ≥ c1

a21x1 + a22x2 + · · · + a2nxn ≥ c2
...

am1x1 + am2x2 + · · · + amnxn ≥ cm

Hence, the IFD with multiple nutrient constraints is the focal

optimization problem.
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� Where there’s one nutrient, there may be others. Let m > 1:

minimize F (~x)

subject to a11x1 + a12x2 + · · · + a1nxn ≥ c1

a21x1 + a22x2 + · · · + a2nxn ≥ c2
...

am1x1 + am2x2 + · · · + amnxn ≥ cm

Hence, the IFD with multiple nutrient constraints is the focal

optimization problem.

� KKT does not imply uniform suitability/price equilibrium. For

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, gradient oblique to ~aj :

∇iF (~x∗) =

Active constraint support
︷ ︸︸ ︷

λ∗
1a1i + λ∗

2a2i + · · ·+ λ∗
mami +

Truncation support
︷ ︸︸ ︷

µ∗
i − ν∗i
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� Where there’s one nutrient, there may be others. Let m > 1:

minimize F (~x)

subject to a11x1 + a12x2 + · · · + a1nxn ≥ c1

a21x1 + a22x2 + · · · + a2nxn ≥ c2
...

am1x1 + am2x2 + · · · + amnxn ≥ cm

Hence, the IFD with multiple nutrient constraints is the focal

optimization problem.

� KKT does not imply uniform suitability/price equilibrium. For

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, gradient oblique to ~aj :

∇iF (~x∗) =

Active constraint support
︷ ︸︸ ︷

λ∗
1a1i + λ∗

2a2i + · · ·+ λ∗
mami +

Truncation support
︷ ︸︸ ︷

µ∗
i − ν∗i

Impact on observations of foraging distributions?
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� Classic problem in distributed power generation:

minimize

n∑

i=1

Ci(Pi)

subject to P1 + P2 + · · ·+ Pn = PD

for n ∈ N where generator i ∈ {1, 2, . . . , n} contributes Pi power to PD

power demanded at a generator cost of Ci(Pi).
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� Classic problem in distributed power generation:

minimize

n∑

i=1

Ci(Pi)

subject to P1 + P2 + · · ·+ Pn = PD

for n ∈ N where generator i ∈ {1, 2, . . . , n} contributes Pi power to PD

power demanded at a generator cost of Ci(Pi).

� Graphical solution described by Bergen and Vittal (2000):

Generated power
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λ < λ∗
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� Classic problem in distributed power generation:

minimize
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Ci(Pi)

subject to P1 + P2 + · · ·+ Pn ≥ PD

for n ∈ N where generator i ∈ {1, 2, . . . , n} contributes Pi power to PD

power demanded at a generator cost of Ci(Pi).
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λ∗ > 0,
and so

an inequality
constraint is active
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(repeat IFD discussion for economic dispatch problem)
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� Classic problem in distributed power generation:

minimize

n∑

i=1

Ci(Pi)

subject to P1 + P2 + · · ·+ Pn ≥ PD

for n ∈ N where generator i ∈ {1, 2, . . . , n} contributes Pi power to PD

power demanded at a generator cost of Ci(Pi).

� Graphical solution described by Bergen and Vittal (2000):
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(repeat IFD discussion for economic dispatch problem)

[augment with comments about real-time distributed optimization]
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� There are n ∈ N lights and m ∈ N sensors.

� For each i ∈ {1, 2, . . . , n}, xi is control signal for ith light.

� Lighting-control–photosensor-reading maps are approximately linear.

� Slow disturbance sources (e.g., windows) exist and can be harvested.

� Meet constraints at each sensor using reduced power.
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Again:

minimize F (~x)

subject to a11x1 + a12x2 + · · · + a1nxn ≥ c1

...

am1x1 + am2x2 + · · · + amnxn ≥ cm

Each sensor is a nutrient; each light is a food patch.
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� Especially for intelligent light case, distributed solvers are desired.
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� Constraint set {~x ∈ X : A~x ≥ ~c} is non-separable polyhedron in general.

� Dual problem has separable constraint set Rm, but sparsity in A is often
destroyed in dual space.
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� Especially for intelligent light case, distributed solvers are desired.

� Constraint set {~x ∈ X : A~x ≥ ~c} is non-separable polyhedron in general.

� Dual problem has separable constraint set Rm, but sparsity in A is often
destroyed in dual space. Sequential iterations yield no parallelization.
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� Especially for intelligent light case, distributed solvers are desired.

� Constraint set {~x ∈ X : A~x ≥ ~c} is non-separable polyhedron in general.

� Dual problem has separable constraint set Rm, but sparsity in A is often
destroyed in dual space. Sequential iterations yield no parallelization.

� Distributed approach here for convex F with monotonic ∇F :
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� A MultiIFD discrete-time realization with sufficiently small parameter δ:

� For each i ∈ {1, 2, . . . , n},

x+
i = xi − δ.

� For each j ∈ {1, 2, . . . ,m},

~x+ = ~x+

{

σj~vj if ~a⊤j ~x ≤ cj

0 otherwise

where MultiIFD direction

~vj =
[

aj1

∇1F (~x) ,
aj2

∇2F (~x) , · · · ,
ajn

∇nF (~x)

]⊤

and

σj =
cj − ~a⊤j ~x

~a⊤j ~vj
.
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maximizer with entry costs.
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� Totally asynchronous distributed solver converges to unique

Nash equilibrium under topological and payment constraints.

� Convergence conditions similar to Hamilton’s rule on

networks.
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� New formulation of IFD as cost minimizer under nutrient constraints.

� Related IFD, economic power dispatch, and intelligent lights.

� Developed distributed solver for non-linear optimization program

with constraints.

� Further developed tabletop intelligent lights testbed.

� Verified distributed solver matches centralized solver performance

on experimental testbed.
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Bobwhite quail

MQ-8

BPA
UV

Intelligent lights

Temperature controller

� Hypothetical generalized mollusc: Lots of molluscs under one shell

� Abstract optimal task-processing agent: Lots of agents under

unified behavioral framework
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� Incorporate speed choice into advantage-to-disadvantage

framework (details follow)

� Investigate using post-modern portfolio theory (PMPT) and

stochastic dominance to revitalize risk-sensitivity theory.
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� Vehicle speed choice is very similar to cryptic prey problem
described by Gendron and Staddon (1983)

� Ceteris paribus, encounter rate increases with search
speed

� Search cost increases with search speed

� Detection mistakes may vary with speed

� Non-trivial speed–prey choice coupling

� Prey =⇒ speed =⇒ rate =⇒ prey

Bobwhite quail
(Gendron and
Staddon 1983)

Les Howard

� To match bobwhite quail observations, Gendron and Staddon choose
detection function P d

i (u) , (1− (u/umax)
Ki)1/Ki that maps search

speed u ∈ [0, umax] to detection probability P d
i for tasks of type i with

conspicuousness Ki ∈ [0,∞).

� No analytical tractability

� Chose n = 2 for simulation (1983)

� P d
i is strange at bounds (1 and 0)

u/umax

P d
i (u)

Ki

b

b

b

b

0.4

0.8

1.5

4
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λi(u) = uDiP
d
i (u)

where Di is the linear density in the population
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� Search cost is also assumed to be affine function

cs(u) = csℓu+ csa
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� Speed u ∈ [umin, umax] ⊂ [0,∞) influences each encounter rate

λi(u) = uDiP
d
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where Di is the linear density in the population

� Detection function is linear interpolation of probability bounds
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u

P d
i (u)

b

b
b

b

umin umax

high

low

P d
i (u) = P ℓ

i u+ P a
i

� Search cost is also assumed to be affine function

ci(u) = cℓiu+ cai

[ Processing costs can be modeled in a similar way ]
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� After regrouping, new objective function

R(~p, u) =
G2(~p)u

2 +G1(~p)u+G0(~q)

T2(~p)u2 + T1(~p)u+ 1

where coefficients

G2(~p) ,
n∑

i=1

DipigiP
ℓ
i

G1(~p) ,

n∑

i=1

DipiP
a
i gi − csℓ

G0(~p) , −csa

T2(~p) ,

n∑

i=1

piτiDiP
ℓ
i

T1(~p) ,
n∑

i=1

piτiDiP
a
i

are constant with respect to u (i.e., biquadratic ratio)
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� After regrouping, new objective function

R(~p, u) =
G2(~p)u

2 +G1(~p)u+G0(~q)

T2(~p)u2 + T1(~p)u+ 1

where coefficients

G2(~p) ,
n∑

i=1

DipigiP
ℓ
i

G1(~p) ,

n∑

i=1

DipiP
a
i gi − csℓ

G0(~p) , −csa

T2(~p) ,

n∑

i=1

piτiDiP
ℓ
i

T1(~p) ,
n∑

i=1

piτiDiP
a
i

are constant with respect to u (i.e., biquadratic ratio)

� Find optimal u∗ for each ~p∗ candidate (n+ 1 total)
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� Because biquadratic objective, for each ~p∗ candidate,

∂R(u)

∂u
=

(G2T1 −G1T2)u
2 + 2(G2 −G0T2)u+ (G1 −G0T1)
(

T2u2 + T1u+ 1

)2

By KKT, if quadratic numerator root u∗ ∈ [umin, umax], then u∗ is

optimal speed; otherwise, optimal speed u∗ ∈ {umin, umax} based

on sign of numerator
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� Estimation process =⇒ type-II type-III functional response
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� Because biquadratic objective, for each ~p∗ candidate,

∂R(u)

∂u
=

(G2T1 −G1T2)u
2 + 2(G2 −G0T2)u+ (G1 −G0T1)
(

T2u2 + T1u+ 1

)2

By KKT, if quadratic numerator root u∗ ∈ [umin, umax], then u∗ is

optimal speed; otherwise, optimal speed u∗ ∈ {umin, umax} based

on sign of numerator

� Implement (n+ 1)-search algorithm on-line if Di density estimates

available (Pavlic and Passino 2009, Dubins’ car AAV simulations

with speed filtering)

� Non-trivial to guarantee convergence of density estimates on-line

� Estimation process =⇒ type-II type-III functional response

Future direction:
Augment advantage-to-disadvantage framework with

parameter representing speed.
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� Optimal forwarding tendencies

� Simultaneous forwarding and volunteering tendencies

� Tendencies that vary across neighbors

� Incorporate processing time

� Reciprocity
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Introduction

Solitary optimal
task-processing agents
in biology and
engineering

Cooperative task
processing

MultiIFD: Distributed
gradient descent for
constrained optimization

Closing remarks

Future directions∗

Solitary agents

Solitary: Speed
choice∗

CTPN

MultiIFD

Future∗

Engineering Serendipity Optimal Task-Processing Agents

� Proof for multiple-constraint case

� Proof for looser timing

� Non-linear (but likely convex) constraints

� Methods for automatic commissioning

� Compare performance to other conventional intelligent lighting

algorithms

� Exploration of implementation in non-lighting applications
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� Current–voltage/predator–prey analogy

� Tunnel diode limit cycles

� Extend circuit theory into ecological analysis

� Tree dynamics

� Game theoretic analysis of tree distributions

� Tree growth as dynamic system

� Game theoretic analysis of energy efficiency bait-and-switch

� Future pricing plans charge per service rather than per kW-hour

� Consumer incentive to upgrade to high-efficiency devices assumes
long-term payoff

� Long-term payoff vanishes when pricing model changes

� Few now know of pricing changes
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